您当前的位置:首页 > 详细浏览

文献详情

Pazy's fixed point theorem with respect to the partial order in uniformly convex Banach spaces

提交时间: 2016-07-05
作者: Yisheng Song 1 ; Rudong Chen 1 ;
作者单位: 1.河南师范大学数学与信息科学学院; 2.天津工业大学理学院数学系;

内容摘要

In this paper, the Pazy's Fixed Point Theorems of monotone $\alpha-$nonexpansive mapping $T$ are proved in a uniformly convex Banach space $E$ with the partial order ``$\leq$". That is, we obtain that the fixed point set of $T$ with respect to the partial order ``$\leq$" is nonempty whenever the Picard iteration $\{T^nx_0\}$ is bounded for some comparable initial point $x_0$ and its image $Tx_0$. When restricting the demain of $T$ to the cone $P$, a monotone $\alpha-$nonexpansive mapping $T$ has at least a fixed point if and only if the Picard iteration $\{T^n0\}$ is bounbed. Furthermore, with the help of the properties of the normal cone $P$, the weakly and strongly convergent theorems of the Picard iteration $\{T^nx_0\}$ are showed for finding a fixed point of $T$ with respect to the partial order ``$\leq$" in uniformly convex ordered Banach space.
点击下载全文 评论 点击量:4297 下载量:433
来自: 宋义生
DOI:10.12074/201606.00325
推荐引用方式: Yisheng Song,Rudong Chen.Pazy's fixed point theorem with respect to the partial order in uniformly convex Banach spaces.[ChinaXiv:201606.00325] (点此复制)
版本历史
[V2] 2016-07-05 14:43:42 chinaXiv:201606.00325V2 下载全文
[V1] 2016-06-27 07:21:11 chinaXiv:201606.00325v1(查看此版本) 下载全文
相关论文推荐

1. Monadic NM-algebras 2017-03-29

点击下载全文

当前浏览

更改浏览

跨类浏览

  • - 暂无