Current Location:home > Detailed Browse

Article Detail

共词网络LDA 模型的中文文本主题分析:以交通法学文献(2000-2016)为例

Abstracts

【目的】通过结合传统LDA 模型的概率主题抽取方法和共词网络分析发现文献词汇间的联系结构的两者优势, 降低由少量文献产生的高频词汇的干扰, 提高主题凝聚性。【方法】在交通法学文献摘要文本主题分析中,加入文献的关键词作为分词复合词典, 提高语义识别度; 提出CA-LDA 模型(Latent Dirichlet Allocation Model with Co-word Analysis), 在传统LDA 模型的基础上加入共词网络分析, 以共词网络拓扑结构参数作为权重控制词汇主题分配(采用介数中心度), 优先提取同时具有高共现性(中介性)和高频率的词汇。【结果】CA-LDA 模型可以得到多篇文献同时共现的高频词汇, 这样产生的重点词汇表对主题分析更有意义。该算法的结果不仅仅反映词频概率, 同时也能从词汇关联上发现枢纽词汇, 更深入理解该领域的研究热点。【局限】CA-LDA 模型主题数目K的取值采用混淆度标准交叉验证获得, 如果在实际分析中K值太大, 不利于文献主题的分类整理, 未来研究需要对该结果进一步处理来凝聚主题。【结论】本文将该模型应用于交通法学研究领域热点主题分析, 在处理大规模文献数据中取得较好效果。相关研究可以拓展应用于各种领域的大规模文献数据自动化处理中。
Download Comment From cooperative journals:《数据分析与知识发现》 Hits:21481 Downloads:1325
Recommended references: 马红,蔡永明.(2017).共词网络LDA 模型的中文文本主题分析:以交通法学文献(2000-2016)为例.数据分析与知识发现.[ChinaXiv:201711.02008] (Click&Copy)
Version History
[V1] 2017-11-08 15:04:11 chinaXiv:201711.02008V1 Download
Related Paper

Download

Current Browse

Change Subject Browse

Cross Subject Browse

  • - NO