Current Location:home > Detailed Browse

Article Detail

从不显著结果中提取信息的方法:原理及其实现

Abstracts

在实证研究中,研究者有时需要证实当前的数据支持零假设,即没有差异或者没有效应。在零假设显著性检验(Null hypothesis significance test, NHST)框架之下,p > .05的结果(即不显著结果,non-significant results)却无法区分以下两种情况:“有证据表明没有效应(evidence of absence)”和“没有证据表明有效应(absence of evidence)”。然而,研究者经常将p > .05错误地解读为“有证据表明没有效应”,即“支持零假设”。近年来,研究者开始使用等价性检验、贝叶斯估计和贝叶斯因子来从不显著结果中提取有意义的信息,区分以上两种情况。在频率统计框架下,等价性检验通过检验效应是否在最小感兴趣效应的范围内,提供支持零效应的证据;在贝叶斯统计框架下,贝叶斯估计通过对比后验分布的最高密度区间和实际等价区的重叠情况,提供支持或拒绝零效应的证据;而贝叶斯因子则是通过计算当前数据支持零效应和有效应的相对程度,得到贝叶斯因子,进而评估相对于备择假设,当前数据支持零假设的程度。其中,等价性检验和贝叶斯估计中的最小感兴趣效应区间和实际等价区一般通过理论或者以往研究的数据来确定。文章通过分析同一个实例,分别展示了等价性检验、贝叶斯估计和贝叶斯因子如何应用,以及如何确定最小感兴趣效应区间和实际等价区。正确解读不显著结果有利于充分地从数据中提取信息,促进实证研究中证据的累积。
Download Comment Hits:7913 Downloads:487
From: 陆春雷
DOI:10.12074/202001.00113
Recommended references: 陆春雷,王珺,宋琼雅,贾彬彬,许岳培,胡传鹏.(2020).从不显著结果中提取信息的方法:原理及其实现.[ChinaXiv:202001.00113] (Click&Copy)
Version History
[V2] 2020-01-15 22:18:15 chinaXiv:202001.00113V2 Download
[V1] 2020-01-14 00:01:18 chinaXiv:202001.00113v1(View This Version) Download
Related Paper

Download

Current Browse

Change Subject Browse

Cross Subject Browse

  • - NO