Current Location:home > Detailed Browse

Article Detail

基于游戏行为的黑暗人格预测技术研究

Abstracts

[目的]本研究利用DOTA2游戏行为数据,实现对DOTA2玩家黑暗人格三维度的无侵入识别。[方法]本文利用Clarity 2解析包对DOTA2的游戏日志文件进行解析,提取玩家的游戏行为特征,并利用黑暗十二条量表对玩家的行为特征进行标注,采用机器学习的方法实现对黑暗人格三维度的识别。 [结果]结果发现,在马基雅维利主义、自恋和精神病态三维度上,采用高斯过程回归算法建立的模型在效度和信度上表现最佳,模型预测值与真实值之间的相关系数在0.31-0.45之间,重测信度在0.33-0.53之间。 [局限]本研究未将被试的言语行为特征纳入到建模过程中,使得游戏行为特征不够全面。 [结论]研究结果发现游戏行为数据能够帮助预测个体的黑暗人格,并且通过高斯过程回归建立的模型具有最高信效度。
Download Comment Hits:5167 Downloads:391
From: 朱廷劭
DOI:10.12074/202107.00010
Recommended references: 吕思华,陈雯雯,张乙川,朱廷劭.(2021).基于游戏行为的黑暗人格预测技术研究.[ChinaXiv:202107.00010] (Click&Copy)
Version History
[V1] 2021-07-08 15:25:42 chinaXiv:202107.00010V1 Download
Related Paper

Download

Current Browse

Change Subject Browse

Cross Subject Browse