您当前的位置: > 详细浏览

一种改进Transformer的电力负荷预测方法

摘要:负荷预测是电网系统中很多应用的关键部分,具有重要作用。然而,由于电网负荷的非线性、时变性和不确定性,使得准确预测负荷具有一定的挑战。充分挖掘负荷序列的潜在特征是提升预测准确率的关键。本文认为在特征提取时应该充分利用负荷序列的位置信息、趋势性、周期性和时间信息,同时还应构建更深层次的神经网络框架进行特征挖掘。因此,本文提出了基于特征嵌入和Transformer框架的负荷预测模型,该模型由特征嵌入层,Transformer层和预测层组成。在特征嵌入层,模型首先对历史负荷的位置信息、趋势性、周期性和时间信息进行特征嵌入,然后再与天气信息进行融合,得到特征向量。Transformer层则接受历史序列的特征向量并挖掘序列的非线性时序依赖关系。预测层通过全连接网络实现负荷预测。从实验结果来看,本文模型的预测性能优于对比模型,体现了该模型的可行性和有效性。

版本历史

[V1] 2021-08-11 16:31:37 ChinaXiv:202108.00061V1 下载全文
点击下载全文
同行评议状态
待评议
许可声明
metrics指标
  • 点击量10988
  • 下载量1076
评论
分享
邀请专家评阅