您当前的位置: > 详细浏览

相对性原理中的基础物理

Fundamental Physics on the Principle of Relativity

摘要:本文研究了质点动力学的相对性原理的物理逻辑。通过对动力学中因果关系的分析,找到了牛顿力学中存在惯性力和惯性系问题的根源,发现在牛顿第二定律的形式体系中忽略了考虑参考物的因果对应。参考系的动力学的特性应归因于参考物。 由此,参考物和被考察对象应被置于完全平等的地位。因此,本文介绍了一个新的不受惯性系影响、并在所有平动参考系中都能直接适用的质点动力学的新方程。对于旋转参考系,一方面由于前面已经揭示了惯性力的性质,即作用在参考物上的经过质量比加权后的真实受力。 因此,引力的物理效应已经明确不等同于惯性力的物理效应。另一方面,根据因果对应的精神,动力学的相对性要拓展到旋转参考系,就要确定旋转参考系的物理,进一步则必须包含确定该参考系的至少四个不共面的参考物体的动力学性质。因此,从数学上讲,还没有办法统一构建成一个简明的公式。 正是基于这两方面基础物理的考量,本文指出当前的任何广义相对性原理都是缺乏足够依据的。而对动力学的相对性原理进行拓展的关键是保证动力学方程两边的参考物的因果对应。

英文摘要:This article investigates the physics logic of the principle of relativity for particle dynamics. Through the analysis of causal corresponding in dynamics, the reason why the puzzle of inertial force and inertial reference frame exists in Newtonian mechanics is uncovered, and the conclusion is that the causal corresponding of the reference frame is neglected in the formula of particle dynamics. The dynamics property of the reference frame should be attributed to the reference object. At the same time, the reference object and the object being investigated should be put on an entirely equal status. Therefore, a new particle dynamics equation that is not affected by the inertial reference frame and keeps invariant in all translational frames of reference is introduced. As for the rotating reference frame, on the one hand, the nature of inertial forces has been revealed as the mass-ratio weighted real force acting on the reference object. So the physics effect of the gravitational force is not equal to that of the inertial force. On the other hand, in the spirit of causal corresponding, the physics of rotating reference frames must contain the dynamics properties of four non-coplanar reference objects. Hence it is difficult to be reconstructed into a concise formula. In this sense, this article also proposes that Einstein's principle of general relativity is not credible. The key point of the extension of the dynamical principle of relativity is to ensure the causal correspondence of reference object(s) on both sides of the dynamical equation.

版本历史

[V3] 2022-06-08 22:03:04 chinaXiv:202206.00038V3 下载全文
[V2] 2022-06-02 15:50:12 chinaXiv:202206.00038v2 查看此版本 下载全文
[V1] 2022-06-02 13:49:49 chinaXiv:202206.00038v1 查看此版本 下载全文
点击下载全文
同行评议状态
待评议
许可声明
metrics指标
  • 点击量1093
  • 下载量463
评论
分享
邀请专家评阅