您当前的位置: > 详细浏览

空气质量预测的深度学习模型研究与评估

请选择邀稿期刊:

Research and Practice of Deep Learning Model for Air Quality Prediction

摘要: 目的 及时和准确的空气质量预测数据对于环境管理至关重要,尤其是在空气重污染期间,预测数据可以为政府生态环境管理部门应对污染状况、精准地调配社会资源的决策提供数据支撑。方法 笔者研发的基于深度学习的空气质量预测模型AirNet6,可以兼顾准确性和实时性,实现臭氧、二氧化硫、一氧化碳等因子的7天甚至更长时间的空气质量预测。结果 与传统的化学模型演算不同,本模型使用时空图卷积网络(STGCN),能捕获历史监测数据、天气预测数据、社会活动等数据的规律,在2分钟内完成一百多个点位未来168小时数据的预测。结论 实验表明,AirNet6模型在速度、节能和准确度上,比传统的化学模型及时间序列AI模型均有明显进步。关键词:空气质量预测、人工智能、深度学习模型、时空图卷积网络

Abstract: Objective Timely and accurate air quality prediction data is very important for environmental management, especially during the period of heavy air pollution. The prediction data can provide data support for the decision-making of the government's ecological environment management departments to cope with the pollution situation and accurately allocate social resources.Methods The air quality prediction model AirNet6developed by the author based on depth learning can give consideration to both accuracy and real-time performance to achieve 7-day or longer air quality prediction for ozone, sulfur dioxide, carbon monoxide and other factors.Results Unlike traditional chemical model calculations, this model base on Spatio-Temporal Graph Convolutional Networks (STGCN), which captures the laws of historical monitoring data, weather prediction data, social activities and other data, and completes the prediction of more than one hundred points for the next 168 hours in two minutes.Conclusions Experimentsshow that the AirNet6 model has made significant progress in speed, energy efficiency, and accuracy compared to traditional chemical models and time series AI models.

版本历史

[V1] 2023-09-22 11:14:09 ChinaXiv:202309.00173V1 下载全文
点击下载全文
预览
同行评议状态
通过
许可声明
metrics指标
  •  点击量4482
  •  下载量139
评论
分享