您当前的位置: > 详细浏览

Co-doped Ni hydroxide and oxide nanosheet networks Laser-Assisted Synthesis Effective Doping, and Ultrahigh Pseudocapacitor Performance

请选择邀稿期刊:
摘要: Morphology control and impurity doping are two widely applied strategies to improve the electrochemical performance of nanomaterials. Herein, we report an environmentally friendly approach to obtain Co-doped Ni(OH)2 nanosheet networks using a laser-induced cobalt colloid as a doping precursor followed by an aging treatment in a hybrid medium of nickel ions. The shape and specific surface area of the doped Ni(OH)2 can be successfully adjusted by changing the concentration of sodium thiosulfate. Furthermore, a Co-doped Ni(OH)2 nanosheet network was further converted into Co-doped NiO with its pristine morphology retained via facile thermal decomposition in air. The structure and electrochemical performance of the as-prepared samples are investigated with scanning and transmission electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, Fourier transform infrared spectroscopy, the nitrogen adsorption-desorption isotherm technique, and electrochemical measurements. The Co-doped Ni(OH)2 electrode shows an ultrahigh specific capacitance of 1421 F/g at a current density of 6 A/g, and a good retention level of 76% after 1000 cycles, in sharp contrast with only a 47% retention level of the pure Ni(OH)2 electrode at the same current density. In addition, the Co-doped NiO electrode exhibits a capacitance of 720 F/g at 6 A/g and 92% retention after 1000 cycles, which is also superior to those values for relevant pure NiO electrodes. The Co2+ partially substitutes for Ni2+ in the metal hydroxide and oxide, resulting in an increase of free holes in the valence band, and, therefore, enhancement of the p-type conductivity of Ni(OH)2 and NiO. Moreover, such novel mesoporous nanosheet network structures are also able to enlarge the electrode-electrolyte contact area and shorten the path length for ion transport. The synergetic effect of these two results is responsible for the observed ultrahigh pseudocapacitor performance.

版本历史

[V1] 2017-11-01 16:09:25 ChinaXiv:201711.00004V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量24265
  •  下载量2358
评论
分享
申请专家评阅