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Abstract—The application of Unmanned aerial vehicles (UAVs) 

in both civilian and military domains is drawing increasing 

attention recently. This paper investigates a new routing problem 

of small UAVs for information collection, where UAVs can be 

recharged at platforms (ground vehicles or stations) distributed in 

the area. Different from the previous works on UAV routing, the 

UAVs are allowed to partially recharge their batteries according 

to the requirement in the following route. A mixed integer 

nonlinear programming model is developed to formulate the 

problem, where both the overall time for completing all targets’ 

observation and the number of UAVs are minimized. An improved 

adaptive large neighborhood search (ALNS) algorithm with 

simulated annealing criterion is designed, and a recharging 

platform insertion heuristic is developed to determine the 

recharging strategy and construct feasible solutions. To verify the 

effectiveness of the proposed ALNS algorithm, a set of new 

benchmark instances are designed based on the well-known 

Solomon dataset and solved. The computational results are 

compared with those obtained by the ant colony optimization and 

variable neighborhood search, which shows that ALNS performs 

significantly better and stable. Furthermore, analysis of the 

experimental results indicates that many advantages can be 

obtained through introducing the recharging strategy for small 

UAVs. 

 
Index Terms—Unmanned aerial vehicle, routing, heuristic, 

recharging 

 

I. INTRODUCTION 

MALL Unmanned aerial vehicles (UAVs) or drones play 

an increasing role in both civilian and military areas, for 

instance, agriculture monitoring, disaster relief, battlefield 

reconnaissance, border patrol and logistic delivery. In the 

civilian applications, UAVs showed great market potential 

which leads to significant cost savings in the last-mile package 

delivery, information collection, wild search & rescue, and 

agriculture monitoring etc [1]. Many companies around the 

world including UPS [2], DHL [3], Alibaba [4] and Amazon [5] 

have adopted UAVs in the “last-mile-delivery” so as to reduce 

the logistics cost and increase the distribution efficiency. Since 

UAVs can access targets in dangerous environment without 

losses of human lives, they are widely used in military 
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operations. Small UAVs can fly at low altitude and hover over 

the targets to collect accurate information, and also the 

advantages in miniaturization, strong concealment, easy 

maintenance and low cost facilitate their application on 

Intelligence, Surveillance and Reconnaissance (ISR) missions 

[6].  

Due to the limited capacity of battery power, the small UAVs’ 

endurance range is relatively small, which is viewed as a main 

barrier of their application on more ISR missions in large areas. 

Especially when the small UAV has to travel in a large area, the 

UAV need to recharge its battery during the flying route. Many 

researches focused on extending the endurance range of small 

UAVs have been conducted, e.g. new energy supported design 

and the solar power system [7], automated battery swapping 

and recharging [8], and efficient power allocation [9]. 

In order to cope with the limitation of UAV's endurance, we 

proposed a new application mode of small UAVs, where their 

battery can be recharged at some platforms distributed in the 

area. Recently, dynamic wireless charging (DWC) technology 

[10] is applied as a novel way of recharging electric vehicles, 

and the battery of EVs can be recharged remotely while it is 

staying around the infrastructure equipped with DWC. With the 

miniaturization and intelligence of wireless charging equipment, 

fast wireless charging devices can be installed on many stations 

and ground vehicles, which make them act as recharging 

platforms for small UAVs. When the battery power of small 

UAV is insufficient, it can visit the near recharging platform to 

recharge the battery and then continue to carry out the mission. 

In this case, the routing of UAVs should consider the decisions 

on the selection of recharging platform and the recharging level 

of the battery. 

The UAV routing problem with recharging has some 

similarity to the electric vehicle routing problem (EVRP) in 

commercial field [11]. An important characteristic of EVRP is 

that EVs need to visit the recharging station during the route to 

extend the endurance range and complete all the delivery tasks. 

The main difference is that the EVs do not consume the battery 

power when waiting and serving customers, while small UAVs 

consume battery power when waiting and collecting 

information above the target, and the power consumption speed 
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is usually faster when UAV is collecting information due to 

additional power consumption by carried sensors. 

In this paper, we investigated the UAV routing problem with 

recharging and established a mixed integer nonlinear 

programming (MINLP) model to formulate the problem. An 

improved adaptive large neighborhood search (ALNS) 

embedded with a recharging platform insertion strategy is 

proposed to find the global better solutions for the problem. 

Moreover, we designed a set of benchmark instances based on 

the dataset in [12], and the performance of the proposed ALNS 

algorithm is tested. Also, the performance and efficiency of the 

ALNS algorithm is compared with the ant colony optimization 

(ACO) and variable neighborhood search (VNS) algorithms. 

Computational results show that the ALNS can achieve much 

better solutions in shorter computation time for most of the 

instances. 

The reminder of this paper is organized as follows: In the 

second section, related literatures are reviewed. In the third 

section, the problem is illustrated and formulated as a MINLP 

model. To find the feasible solution in a short time for large 

instances, an improved ALNS algorithm is proposed in Section 

IV. The performance of the ALNS algorithm is tested by newly 

designed benchmark dataset in the 5th section. Finally, the 

whole work is summarized and future directions are discussed. 

II. LITERATURE REVIEW 

In this section, the two streams of relevant literatures are 

reviewed, which are the UAV routing problem and the EVRP. 

UAV routing problems have been investigated in the Military 

and Civilian application domains. Shetty et al. [13] proposed a 

tactical routing problem of a team of UAVs to conduct 

attacking mission based on the priorities of targets, where the 

UAV can carry ammunition to attack different targets. 

Ceccarelli et al. [14] investigated a micro UAV routing problem 

for reconnaissance and carried on the simulation experiments 

for finding the robust solution in the presence of randomly 

perturbed wind. Mufalli et al. [15] considered the simultaneous 

sensors selection and routing of UAVs where the loads are the 

influencing factors of endurance range and a new mathematical 

model is constructed to solve the problem. Avellar et al. [16] 

routed a group of UAVs for area coverage to optimize the 

minimum coverage time, where intelligence collection can be 

carried out in the fixed area and the specified time windows of 

targets are taken into consideration. Evers et al. [17] studied the 

routing problem of multiple UAVs for reconnaissance mission, 

taking the uncertainty in the fuel usage into account. Mahmud 

and Cho [18] investigated the UAV routing problem where 

UAVs need to avoid being predicted by the enemy, and 

Vanegas et al. [19] considered the routing problem of UAVs in 

the environmental uncertainty. In civilian application, UAVs 

can be used for logistics delivery [20], medical material 

transportation [21], efficient road detection and tracking [22] 

and disaster relief operations [23]. Kevin et al. [24] investigated 

the vehicle routing problem for drone delivery scenarios which 

minimizes both the cost and the overall delivery time 

considering an energy consumption model. Sawadsitang et al. 

[25] proposed the joint ground and aerial delivery service 

optimization and planning framework considering the 

uncertainty of drone package delivery. To solve the problem, 

they formulated a three-stage stochastic integer programming 

model with a decomposition method. In the work [26], the 

UAVs were used for dynamic wildfire tracking since the UAVs 

can work in hazardous fire tracking instead of humans, and a 

distributed control framework was proposed for the UAV team. 

 However, due to the endurance range of small UAV, the 

radius of its endurance range is restricted, which greatly limited 

their applications in large areas. To overcome this difficulty, 

Liu et al. [6] and Luo et al. [20] proposed a novel two-echelon 

ground vehicle (GV) and UAV cooperated routing problem 

(2E-GUCRP) for ISR missions, where the GV serves as the 

mobile platform carrying the UAVs and recharging the UAV’s 

battery. In this new mode, UAV can enlarge its endurance range 

through multiple starting on the GVs. In recently years, the 

application of UAVs in the civilian operation is drawing 

increasing attention, many commercial logistic companies used 

UAVs for the ‘last-mile-delivery’ to save the cost for logistic 

distribution. Chiang et al. [27] proposed a GV and UAV 

cooperated system where GVs are the mobile platform for 

UAVs to start and land on, and both of them can deliver the 

packages during the route. To overcome the limited endurance 

range of the small UAVs, Sungwoo and Ilkyeong [28] 

investigated a truck-drone system, where a fixed drone station 

is built to collect drones and recharging equipments, and a truck 

is employed to connect the station and the logistics distribution 

center. Liu et al. [29] designed a Simulated Annealing 

algorithm (SA) to solve the 2E-GUCRP problem for package 

delivery. In these studies, with the assistance of ground vehicles, 

the endurance range of UAV is effectively extended. However, 

UAV can only visit targets which are restricted by the path of 

GV. To extend the endurance range and release the UAV’s 

dependence on GV, Coelho et al. [30] designed a two-level 

routing problem model, where the UAV can be recharged at a 

given recharging station to complete the tour. Li et al. [31] 

proposed a mission planning method which considered both the 

routing of UAVs and recharging stations location, and assumed 

the recharging procedure takes a fixed time. Ribeiro et al. [32] 

studied the application of UAVs for belt conveyor inspection 

system in the mining industry where UAVs are restricted to be 

fully charged at the recharging station. To extend the UAV 

mission coverage, Noureddine et al. [33] utilized the public land 

transport vehicle carrying the UAV during part of its route for 

saving the energy consumption, and the recharging power is set 

to a fixed parameter. Yu et al. [34] studied the UAV route 

planning by allowing it to visit the fixed recharging stations and 

the unmanned ground vehicles (UGVs) serve as mobile stations.  

The routing problem with recharging is also studied in the 

EVRP. Schneider et al. [12] studied the EVRP with Time 

Windows (EVRPTW), where the full fast recharging strategy is 

applied. They designed a metaheuristic through integrating the 

VNS algorithm with Tabu search, which is tested by instances 

generated from the Solomon dataset. Ding et al. [35] studied the 

EVRP where the partial recharging for electric vehicles (EVs) 

is allowed and the capacity of the recharging station is taken 

into consideration. Keskin and Çatay [36] investigated the 
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EVRPTW in which EVs are also allowed partially recharged. 

More works on EVRP can be found in the comprehensive 

review by [37]. 

From the related literature presented above, we can see that 

it is an important research topic to investigate different 

recharging strategies for enlarging the endurance of UAV. The 

mode of UAVs recharged by smart wireless recharging 

platforms is a new research area, and more efficient models and 

algorithms are required. 

III. PROBLEM FORMULATION 

The initial motivation of the UAV routing problem with 

recharging is from an application of reconnaissance missions in 

battlefield, where multiple small UAVs start from the base and 

collect information at a set of targets. There are a certain 

number of ground (combat) vehicles distributed in the 

battlefield, which are configured with fast wireless charging 

devices and act as recharging platforms of UAVs. Before the 

UAV’s battery powers off, it can fly to any of these platforms 

for recharging and then continue to visit the following targets. 

Fig. 1 presents an illustrative example of the problem. The 

different battery icons denote the power level of the UAV’s 

battery after visiting each target. The UAV start from the unique 

base with a fully charged battery, and after visiting target T3, 

the battery power cannot support it to visit the next target T4, 

and therefore the UAV finds the nearby recharging platform P2 

for recharging its battery partially. After recharging, the UAV 

continues its tour for visiting T4 and T5, and then flies back to 

the base. Furthermore, the UAV is allowed to visit recharging 

platforms more than once. 

 
Fig. 1 An illustrative example of the UAV routing problem with recharging 

 

Although the UAV routing problem with recharging is 

initially inspired form a military application, there are also 

many potential applications in civil area, e.g. information 

collection in wild areas, wild search & rescue, and agriculture 

monitoring etc. The main factors and constraints in problem are 

as follows: 

1）UAVs 

Small UAV is driven by the lithium battery whose capacity 

is limited. The battery consumption is mainly divided into three 

parts. Firstly, UAV consumes power during the flight between 

targets visited, and the speed of battery power consumption is 

related with the flying speed and distance. Secondly, when the 

UAV is collecting the information at a target, the sensors on the 

UAV start to work and consume battery power. The 

consumption rate is related to the accuracy and duration of 

reconnaissance at the target. At other times, the sensor is turned 

off and does not consume battery power. However, the power 

consumption is still existed when the UAV is hovering above 

the target and waiting, which is the third part. In this paper, 

UAVs start from the base and must return to it after finishing 

all the reconnaissance missions within the specified time. 

2）Recharging platform 

 Many ground vehicles in the battlefield are equipped with 

wireless charging devices, which can recharge the UAVs 

quickly. The recharging level of the UAV’s battery is related to 

the recharging time. The location of these platforms and the 

base are known. 

3）Targets 

A set of targets are located at different positions in the area, 

and each target can only be detected in a specified time window. 

If the UAV arrives earlier than the earliest start time, the UAV 

needs to hover over the target and wait. The time windows and 

the location information of all the targets are given before the 

mission planning period. 

The objective of the problem is to minimize the total mission 

time and the number of UAVs utilized through optimizing the 

flight routes for reconnaissance and recharging. 

The notations applied in the following model formulation are 

summarized in TABLE I: 

 
TABLE I 

NOTATIONS USED IN THE FOLLOWING MODEL 

Sets  

1V
 set of targets; 

F  set of recharging platforms and their copies; 

{0}  the starting base; 

{n 1}+  the ending base; 

0V   
set of targets, recharging platforms and the starting 

base,  0

1 0V V F= ; 

1nV +

 
set of targets, recharging platforms and ending base,

 1

1 1nV V F n+ = + ; 

V  set of all vertices; 
Parameters  

ijd   the travel distance between node i  and j ; 

ijt   the travel time between node i  and j ; 

g   the battery charge rate; 

is   the reconnaissance time of target i ; 

ie   the earliest starting time of reconnaissance at target 
i ; 

il   the latest starting time of reconnaissance at target i ; 

Q   the capacity of the UAV’s battery; 

   the weight coefficient of unit UAV; 

   the weight coefficient of total reconnaissance time, 

and α+β=1； 

dc   the power consuming rate of UAV for travelling;  

rc   the power consuming rate of UAV for 

reconnaissance;   

wc   the power consuming rate of UAV for waiting;  

uavc   fixed cost of a UAV; 
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Decision 

variables 
 

iu   the starting time of reconnaissance target i , 1i V ; 

iy   the remaining power level when the UAV arrives at 

the node i , 1i V ; 

iq   the recharging quantity at recharging platform i , 

i F ; 

iY   the power level when the UAV leaves the recharging 

platform i ， i F ; 

i   the waiting time of the UAV at target i , 1i V ; 

ijx   1, if a UAV travels from node i  to node j ; 

otherwise 0; 

iz   1, if the recharging platform i  is selected for 

recharging; otherwise 0; 

 

The mathematical model of the UAV routing problem is 

formulated as follows： 

Min  
1 1 1

0

,

+uav j ij ij i i i i

j V F i j V i F i V i V

c x x t z q g s  
    

  
 =  +  + + 

  
                (1) 

Subject to 

1,

1
n

ij

j V i j

x
+ 

=
, 1i V 

,                                                                  (2) 

1,

1
n

ij

j V i j

x
+ 


, i F  ,                                                                  (3) 

0 1, ,n
ij ji

i V i j i V i j

x x
+   

= 
, 1j V 

                                                          (4) 

0( ) (1 )i ij i ij ij ju t s x l x u+ + − − 
,

0 1, ,ni V j V i j+     ,                        (5) 

0( )(1 )i ij ij i i ij ju t x gq z l gQ x u+ + − + − 
,

1, ,ni F j V i j+     ,             (6) 

j j je u l 
, j V  ,                                                                    (7) 

0 (c ) s (1 )j i d ij ij r i ij w i ij ijy y d x c x c x Q x  −  − −  + −
,                

1

1, ,ni V j V i j+    
, (8) 

0 (c ) (1 )j i d ij ij ijy Y d x Q x  −  + −
,

1, ,ni F j V i j+     ,                    (9) 
( )i i i iY z y q= +

, i F  ,                                                              (10) 

iY Q
, i F  ,                                                                        (11) 

{0,1}ijx 
,

0 1, ,ni V j V i j+     ,                                               (12) 
{0,1}jz 

, i F  ,                                                                    (13) 
0iq 

, i F  ,                                                                         (14) 

Objective (1) is to minimize a weighted sum of the total 

number of UAVs and the overall time for completing all targets’ 

reconnaissance mission, where the weighted coefficients are 

determined by the planner. Constraint (2) ensures each target is 

visited only once, while constraint (3) handles the connectivity 

between the nodes (targets and recharging platforms). 

Constraint (4) guarantees that the number of outgoing arcs 

equals to the number of incoming arcs at each vertex. 

Constraints (5) and (6) enforce the feasibility of the time flow. 

Constraint (7) ensures the time windows of the targets and base. 

Constraints (8) and (9) balance the residual battery level after a 

visit to a target or a recharging platform and ensure that it is 

always non-negative. Constraint (10) determines the battery 

level after recharging at a recharging platform. Constraint (11) 

makes sure that the battery level at recharging platform is 

restricted to the UAV recharging capability. Constraints (12)-

(14) define the decision variables. 

In the model, the UAV’s battery is allowed to be recharged 

partially, and thus only required battery power for the following 

route would be recharged so as to save time and energy. 

IV. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 

In this section, an improved adaptive large neighborhood 

search (ALNS) algorithm embedded with a recharging platform 

insertion heuristic is proposed. The ALNS framework was 

firstly proposed by Pisinger and Ropke [38-40], and has been 

widely used for solving the VRP [41-43] and EVRP [44-45]. 

The basic idea of ALNS is to employ different combinations of 

destroy and repair operators to obtain new neighborhood 

solutions while the utilizing probability of each operator is 

adaptively updated based on its weight which is related to its 

performance in the search process. 

 

 
 

In this section, a two-stage constructive heuristic is used to 

generate an initial feasible solution for the problem. First, the 

nearest neighborhood heuristic is utilized to construct a solution 

without regarding the battery capacity constraint. In this stage, 

each UAV’s route satisfies the constraints on time window, 

while the battery capacity may be not enough to support the 

UAV to complete the flight of the route. Thus, in the second 

stage, a recharging platform insertion heuristic is designed to 

optimize where to recharge the UAV and how much energy 
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should be recharged, so as to make the route feasible. The detail 

process of the insertion heuristic is described in the following 

Subsection A. 

In the search process of ALNS, any change on the targets in 

a route could affect the recharging decisions. In order to 

improve the search efficiency, the destroy and repair operations 

in ALNS are conducted on the Non-Charged (NC) solution 

where all the recharging platforms are removed from the UAVs’ 

routes. When a NC solution is generated after the destroy and 

repair operations, the recharging platform insertion heuristic is 

employed to make it feasible. Thus, each neighborhood search 

operation follows a rule of ‘Search Firstly, and Insertion 

Afterwards’. The new feasible solution is accepted with the SA 

criterion and the main procedure of the ALNS is shown in 

Algorithm 1. 

A. Recharging platform insertion heuristic 

Due to the battery capacity, the endurance range of UAV is 

limited. If the total energy consumption of UAV exceeds its 

battery capacity, it has to visit a recharging platform for 

recharging so as to visit the following targets. A recharging 

platform insertion heuristic is proposed to optimize the 

recharging decisions on where and how much to recharge. The 

main steps of the recharging platform insertion heuristic are 

shown in Algorithm 2. 

 

 
 

In Algorithm 2, the insertion position of recharging platform 

is firstly optimized. For an NC route where the total travel 

distance violates the maximum battery capacity, the UAV starts 

from the base and travels along the route until the target that 

cannot be visited within the left battery level. Then find the 

nearest recharging platform which it could reach by the current 

battery power, and insert it after the current target. To find the 

best inserting position of the recharging platform, all possible 

insertions between adjacent targets are compared. Considering 

the two routes (a) and (b) in Fig. 2 as an example, route (a) and 

route (b) are the two different feasible routes after inserting 

recharging platforms into the same NC route at different 

insertion places. Although UAV in route (b) need to be 

recharged twice, the total time is a little shorter than that of 

route (a) due to the distribution of recharging platforms. In this 

condition, we would choose route (b) instead of (a). 

 
Fig. 2.  An illustration for different insertion places of recharging platforms 

 

After the insertion position of the recharging platform is 

determined, the UAV can be partially recharged and the 

recharging level is determined by the required battery power of 

the subsequent route. After the recharging level at each 

recharging platform is known, the time windows of the targets 

after the recharging platform are influenced and the feasibility 

should be checked again. If there are targets whose time 

windows are not satisfied, they should be removed into the list 

of unvisitV . As shown in Fig. 3, after inserting P4 between target 

3 and target 4, the time windows of target 4 is violated due to 

the long recharging time at P4. Thus, target 4 needs to be 

removed from the route. For the targets in unvisitV , we iteratively 

use the two-stage constructive heuristic until a feasible solution 

is generated. Finally, many feasible routes will be generated 

based on the same NC route after inserting recharging platforms 

in different positions, and the best route will be accepted which 

keeps more targets and consumes shorter time for completing 

the route in the second place. 

 
Fig. 3.  Check the time windows 

B. Neighborhood Structures  

Given an initial feasible solution, remove all the platforms 

and generate a NC solution. The neighborhood search is applied 

through different destroy and repair operators on the NC 
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solution. Firstly, a removal operator is selected and a certain 

number of targets are removed based on the corresponding 

removal rule. Then, an insertion operator is conducted to repair 

the destroyed NC solution through inserting the removed 

targets into the current solution. Finally, the recharging 

platform insertion heuristic is used to insert the recharging 

platforms in the NC solution and generate a feasible solution. 

 

1) Removal operators 

The destroy mechanism of the proposed ALNS framework 

consists of different removal operators. And nine removal 

operators are adapted, which are grouped into two types: Route 

Removal (RR) and Targets Removal (TR). In RR, a UAV route 

is selected and removed. In TR, a subset of   targets are 

selected and moved into the removal list  . The value of 

parameter   is determined according to the overall number of 

targets cn , and here it is generated between 
cn and 

cn  following 

the uniform distribution. All removal operators are introduced 

below. 

Random Route Removal A route is randomly chosen from 

the set of all routes, in which all the targets are removed and 

added into the removal list  . The randomly choosing strategy 

can extend the search range in the solution space and increase 

the probability of finding the global optimum. 

Shortest Route Removal This operator chooses the shortest 

route in the current solution and removes all the targets in this 

selected route. The purpose of this operator is to maximize the 

utility of the UAV and reduce the number of UAVs. 

Random Target Removal A set of   targets are randomly 

removed from different routes in the current solution. The goal 

of random selection is also to diversify and enlarge the search 

range in the solution space. 

Worst-Distance Target Removal The worst distance targets 

are selected one by one and removed from the current solution. 

Here the distance of a target means a sum of the distance from 

the current target to its preceding target and the distance from 

the current target to its succeeding target in the route. 

Worst-Time Target Removal This operator calculates, for 

each target i  , the difference between reconnaissance start time 

and the corresponding earliest start time 
ie , and then iteratively 

removes the target with the largest difference. The purpose is to 

avoid long wait or delayed reconnaissance starting time in order 

to satisfying the time windows of more targets to the maximum 

extent. 

Modified Shaw Removal The idea of this operator is to 

remove a set of targets according to a specified rule. This 

operator is adapted from the Shaw Removal which was 

proposed by Shaw (1998). The difference of general rule 

between the modified and the origin Shaw Removal is that 

UAVs routing do not consider the load capacity but consider 

the reconnaissance time since the reconnaissance duration 

effect the power consumption. Thus, operator starts by 

removing a node i  randomly. Let 1ijl = −  if the target i  and 

target j  are both detected by the same UAV in the same route, 

otherwise 1ijl =  and selects a node 

*

1 2 3 4argmin{ | s s |}ij i j ij i jj d e e l=  +  − +  +  − , where 
1 4 −   are 

the weights parameters. 

Proximity-based Target Removal In this operator, the first 

target is randomly selected, and then the nearest target to the 

former selected one is selected. In each selection, we always 

select the target nearest to the former one. According to this 

strategy, a set of   targets are selected one by one and removed. 

The working way of the operator is illustrated in Fig. 4. 

 

           
Fig. 4.  Proximity-based target removal             Fig. 5.  Zone removal 

 

Time-based Target Removal Similar to the Proximity-

based Target Removal, this operator selects a number of targets 

with proximate time windows and removes them from the 

current solution. 

Zone Removal The operator firstly randomly defines an area 

with a predefined size in the Cartesian coordinate system and 

randomly selects   targets to remove which are located in the 

area. If there are less than   targets in the selected area, then 

reselects an area with the same size, and continue the same 

procedure until   nodes are removed. As Fig. 5 presents, the 

green rectangular box represents the selected area and then 

randomly selects target T4, T5, T6, T7 and T9 in the area to 

remove. The pseudocode of zone removal is given in Algorithm 

3. 

 

 
 

2) Insertion operator 

Five insertion operators are introduced, which are used for 

inserting the removed targets back into the routes to generate a 

new NC solution. In the inserting process, the constraints on 
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time windows must be satisfied, while the battery capacity is 

not considered.  

Greedy Insertion The operator calculates the insertion cost 

of each removed target in the best insertion position, and 

repeatedly inserts the node with the least insertion cost in its 

best feasible position of the current solution. The insertion cost 

here is calculated as the increased distance. 

Regret-2 Insertion Let 
if  represent the difference in the 

objective function value after inserting target i  in the current 

solution. Let *

2 1argmax { f f }i i ii =  −  , where 
1if  is the 

difference after inserting target i in the best feasible insertion 

place and 
2if  is the difference after inserting target i  in the 

second-best insertion place. 

Regret-3 Insertion Similar to the Regret-2 Insertion 

operator, if  represents the same meaning. Let 

*

3 1argmax { f f }i i ii =  −  , where
1if is the difference after 

inserting the target i in the best feasible insertion place and 
3if  

is the difference after inserting the target i  in the third-best 

insertion place. 

Time-based Insertion The idea of this operator originates 

from the Greedy Insertion, the unique difference between the 

two operator is the calculation of the insertion cost. The 

operator defines the insertion cost as the change in the finish 

time of the route. 

Zone Insertion The operator selects the removed targets by 

the criterion of the Time-based Insertion operator above. The 

unique difference is that it only considers the routes in a specific 

zone, instead of investigating all routes in the current destroyed 

solution. 

C. Adaptive adjustment of the operators’ weight  

The selection of the removal and insertion operators is 

governed by a roulette-wheel mechanism. If we have k 

operators with weights 
iw , {1,2,...,k}i   and we choose the 

operator j  with probability 

1

jselect

j k

i

i

w
p

w
=


                                            (15) 

At the beginning, all removal or insertion operators have the 

same probability. Thus, in this paper, there are nine removal 

operators and five insertion operators, the initial weight of each 

removal operator and insertion operator is set to 1/9 and 1/5, 

respectively. During the searching process, they are updates as 

follows: 
1 (1 )t t

i i i iw w r r  + = − +                                  (16) 

where 1t

iw +  is the wight of operator i  in iteration round 1t + ,   

r  is the roulette-wheel parameter, 
i  is the score of the 

operator i  and 
i  is the number of times it was used during the 

last 
WN  iterations. If a new global best solution is obtained, the 

score 
i  of the operator i  is increased by 

1 . If the new 

feasible solution is not a global best solution but better than the 

current solution, the score 
i  is increased by 2 . If the solution 

is worse than the current solution but can be accepted within a 

certain probability, the score 
i  is increased by 

3 . Thus, the 

score 
i  of operator i  is determined by the sum of 

1 , 2 ,
3  

obtained in each iteration. 

D. Acceptance and stopping criteria  

The simulated annealing strategy is adopted as an acceptance 

criterion in the framework of ALNS algorithm. During the 

searching process,
best  is the global best solution, 

current  is the 

current solution before the iteration begins, and 
new  is the new 

feasible solution after the iteration. Let ( )c   denotes the 

objective function value of solution  , a solution 
new  is 

always accepted if ( ) ( )new currentc c   , and accepted with 

probability ( ( ) ( ))/new currentc c T
e

−  −  . If ( ) ( )new currentc c   , where T  

denotes the temperature. In the iteration process, the 

temperature is gradually decreased at a constant rate of hT , 

where 0 1h   is a constant parameter. The algorithm returns 

the global best solution after the maximum number of iterations. 

V. COMPUTATIONAL EXPERIMENTS 

As it is the first work to investigate UAV routing problem 

with recharging, there is no benchmark dataset exists. To 

analyze the performance of the proposed ALNS algorithm, we 

designed a new set of benchmark instances based on the well-

known Solomon dataset. All the algorithms were programmed 

with Visual C++, and all experiments are conducted on a laptop 

with Intel Core i5 processor (3GHz) and 8GB RAM. The data 

set in the following subsections are presented in the 

supplement[53]. 

A. Experiment design  

A set of 56 large instances are designed, and there are 100 

targets and 21 recharging platforms in each instance. The 

distribution of targets and recharging platforms is referred the 

data set in [12], which is designed based on the Solomon dataset. 

These instances can be divided into 3 classes according to the 

geographical distribution of targets: Random distribution (R), 

clustered distribution (C) and a mixture of both (RC). Further, 

the instances with narrow time windows are classified in group 

R1, C1 and RC1, while the ones with wide time windows are 

classified in group R2, C2 and RC2. The detail information for 

all nodes in the 56 instances can be found in the supplement. 

The battery capacity of UAV is a constant and is set as 150. 

Depending on different conditions, the battery power 

consumption rate is set to 1 when UAV is flying en-route, and 

is set to 0.5 when it is hovering above targets and waiting. When 

the UAV is collecting information on a target, it consumes more 

battery power than any time during the travelling and the energy 

consumption rate is set to 2. Besides, the average velocity of 

UAV is set to 1 and the inverse recharging rate is set to 0.33 

which means that a complete recharging from zero battery level 

requires 50 minutes. 

B. Algorithm performance 

To analyze the performance of ALNS, it is compared with two 

widely used metaheuristics for routing problems, which are the 

ant colony optimization (ACO) algorithm and the variable 

neighborhood search (VNS) algorithm. ACO is firstly proposed 

by Dorigo et al. [46] and were widely used to solve the VRP 

and EVRP [47-49]. VNS performs local search on large 
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neighborhoods and its effectiveness is also verified by former 

works [12, 50-51]. In this experiment, we applied the 

framework of ACO and traditional VNS from the work [52]. 

All the 56 instances are solved by ALNS, ACO and VNS 

respectively. In TABLE II-IV, the objective function value of 

best solution in 10 runs are reported. Furthermore, we calculate 

the relative gaps between ALNS and ACO (
1% )for the 

objective function value, where 

( )1%= . . .Obj ALNS Obj ACO Obj ALNS − , and the gaps between 

ALNS and VNS (
2 % ), where 

( )2%= . .VNS .Obj ALNS Obj Obj ALNS − . Thus, a negative value of  

1% /
2 %  means relative improvement obtained by ALNS. 

 
TABLE II 

THE RESULTS OF R TYPE INSTANCES UNDER DIFFERENT METHODS 

Inst. 
Objective 

1%  
2 %  

ALNS ACO VNS 

R101 2268.48 2956.03 2926.82 -23.59 -22.49 

R102 2027.17 2755.44 2631.63 -26.43 -22.97 
R103 1780.75 2302.98 2318.19 -22.68 -23.18 

R104 1557.14 1969.71 1916.42 -20.95 -18.75 
R105 1823.43 2318.40 2250.37 -21.35 -18.97 

R106 1789.65 2216.38 2292.68 -19.25 -21.94 

R107 1663.56 2184.44 2143.02 -23.85 -22.37 
R108 1580.92 1793.02 1795.81 -11.83 -11.97 

R109 1745.17 2115.57 2132.72 -17.51 -18.17 

R110 1559.72 1949.06 1863.35 -19.98 -16.30 
R111 1598.49 2010.06 1933.80 -20.48 -17.34 

R112 1522.88 1687.59 1599.38 -9.76 -4.78 

Average    -19.81 -18.27 

R201 864.59 1155.83 1296.84 -25.20 -33.33 
R202 781.24 1209.12 1272.52 -35.39 -38.61 

R203 741.97 1107.75 1121.97 -33.02 -33.87 

R204 702.30 906.33 985.42 -22.51 -28.73 
R205 800.17 968.27 1003.73 -17.36 -20.28 

R206 757.01 1108.67 1004.70 -31.72 -24.65 

R207 715.33 942.56 968.66 -24.11 -26.15 
R208 706.93 837.72 844.08 -15.61 -16.25 

R209 750.02 981.09 929.40 -23.55 -19.30 

R210 749.06 1085.46 976.31 -30.99 -23.28 
R211 755.92 848.93 844.52 -10.96 -10.49 

Average    -24.58 -24.99 

 
TABLE III 

THE RESULTS OF C TYPE INSTANCES UNDER DIFFERENT METHODS 

Inst. 
Objective 

1%  
2 %  

ALNS ACO VNS 

C101 1402.02 1621.00 1746.16 -13.51 -19.71 
C102 1350.14 1844.74 1675.53 -26.81 -19.42 

C103 1277.20 1744.82 1670.86 -26.80 -23.56 
C104 1192.49 1450.37 1306.90 -17.78 -8.75 

C105 1275.09 1415.71 1524.82 -9.93 -16.38 

C106 1262.51 1413.80 1408.24 -10.70 -10.35 
C107 1196.36 1357.22 1423.80 -11.85 -15.97 

C108 1198.96 1267.97 1404.42 -5.44 -14.63 

C109 1138.29 1219.00 1334.79 -6.62 -14.72 

Average    -14.38 -15.94 

C201 381.28 468.33 602.79 -18.59 -36.75 

C202 382.64 472.10 548.81 -18.95 -30.28 

C203 377.88 483.49 563.14 -21.84 -32.90 
C204 360.83 397.35 437.16 -9.19 -17.46 

C205 371.66 388.31 484.85 -4.29 -23.35 

C206 363.27 386.11 401.39 -5.92 -9.50 
C207 365.47 393.93 468.23 -7.22 -21.95 

C208 365.39 389.16 398.28 -6.11 -8.26 

Average    -11.51 -22.56 

 

The 23 R type instances can be further divided into two 

classes, noted as R1 and R2. Targets in R1 instances have 

narrow time windows, while targets in R2 instances have wide 

time windows. The computational results in TABLE II show 

that the ALNS algorithm can achieve better solutions than other 

algorithms for all the R instances. Furthermore, the value of 

objective function for all R1 instances are reduced by an 

average of 19.81% to ACO and an average of 18.27% to VNS, 

while the value of objective function for all R2 instances the 

instances are reduced by an average of 24.58% to ACO and an 

average of 24.99% to VNS. 

There are also two classes of instances in the C type and RC 

type data set respectively, which are noted as C1/RC1 and 

C2/RC2. TABLE III  reports all the computational results of C 

type instances, and TABLE IV reports the results of RC type 

instances. It can be found that the ALNS algorithm performs 

better than ACO and VNS for all C and RC instances. Generally 

speaking, the results for C2 and RC2 instances are also better 

compared to those of C1 and RC1 respectively. Therefore, it 

shows that the ALNS algorithm works better for instances with 

wide time window, and the ALNS algorithm can efficiently 

enlarge the search space in the situation with loose constraints 

on time window. 
 

TABLE IV 

THE RESULTS OF RC TYPE INSTANCES UNDER DIFFERENT METHODS 

Inst. 
Objective 

1%  
2 %  

ALNS ACO VNS 

RC101 2333.83 2856.69 2869.70 -18.30 -18.67 

RC102 2233.72 2778.83 2662.54 -19.62 -16.11 

RC103 2055.01 2507.59 2396.11 -18.05 -14.24 
RC104 1787.31 2032.21 1969.86 -12.05 -9.27 

RC105 2185.81 2605.71 2594.42 -16.12 -15.75 

RC106 2047.81 2400.05 2372.10 -14.68 -13.67 

RC107 1861.90 2132.97 2019.12 -12.71 -7.79 

RC108 1734.64 1970.73 1787.89 -11.98 -2.98 

Average    -15.44 -12.31 

RC201 557.43 865.43 788.91 -35.59 -29.34 
RC202 475.83 827.74 789.15 -42.52 -39.70 

RC203 430.69 679.95 736.78 -36.66 -41.54 

RC204 379.19 500.88 558.89 -24.30 -32.15 
RC205 459.21 722.68 739.63 -36.46 -37.91 

RC206 429.98 601.60 598.37 -28.53 -28.14 

RC207 400.72 580.31 560.59 -30.95 -28.52 
RC208 338.62 449.39 419.52 -24.65 -19.28 

Average    -32.46 -32.07 

 

The results verify that the performance of ALNS has 

significant superiority for solving the URP-RC problem. The 

ALNS obtained the best solution in all 56 instances. As for the 

fixed cost of vehicles, the ALNS always reached the minimum 

which contributes to the best solution in a great measure. 

 

C. Analysis on the impact of the recharging strategy  

An important characteristic of the investigated problem is 

allowing the UAV to be recharged in the route, which is 

expected to expand the endurance range of UAV and improve 

the routing efficiency with lower cost. To analyze the impact of 

recharging strategy, the ALNS algorithm is used to solve all the 

instances with recharging (URP-RC) and without recharging 

(URP). We analyzed the number of UAVs (m), total mission 

completing time (TT) and the objective function value (Obj) 
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respectively. ALNS is run 10 times for each instance, and the 

best solutions for all instances are reported in TABLE V-VII. 

 From the computational results, it can be seen that the 

number of UAVs for URP-RC is much less than that for URP. 

For the R1 and RC1 type instances, the total completing time 

for URP-RC is also less than that for URP, while for the other 

instances, the URP mode can complete the task in much less 

time. That is because the UAVs in URP-RC have to visit 

multiple recharging platforms in the routes for most of the 

situations, which consume much additional time. Usually, the 

UVAs are critical resources in both military and civil 

application, and its cost are relatively higher than the routing 

cost. The number of UAVs is greatly reduced in URP-RC which  
 

TABLE V 

THE RESULTS OF R TYPE INSTANCES BETWEEN URP-RC AND URP 

Inst. 
URP-RC  URP 

m TT Obj  m TT Obj 

R101 20 2757.78 2378.89  35 2831.96 3165.98 

R102 19 2364.90 2132.45  32 2461.78 2830.89 

R103 17 2139.18 1919.59  30 2146.56 2573.28 

R104 16 1877.20 1738.60  29 1934.60 2417.30 

R105 17 2038.62 1869.31  31 2276.36 2688.18 

R106 17 1931.54 1815.77  29 2142.44 2521.22 

R107 16 1969.50 1784.75  29 2035.20 2467.60 

R108 15 1921.74 1710.87  28 1919.48 2359.74 

R109 16 1940.00 1770.00  29 2044.30 2472.15 

R110 15 1863.86 1681.93  28 1937.58 2368.79 

R111 16 1916.68 1758.34  29 1984.68 2442.34 

R112 15 1677.68 1588.84  28 1869.66 2334.83 

R201 9 904.74 902.37  19 663.34 1281.67 

R202 9 821.40 860.70  18 469.38 1134.69 

R203 8 736.68 768.34  18 383.98 1091.99 

R204 8 671.36 735.68  17 370.60 1035.30 

R205 9 725.58 812.79  17 393.14 1046.57 

R206 8 714.76 757.38  18 374.66 1087.33 

R207 8 678.68 739.34  17 352.08 1026.04 

R208 8 637.84 718.92  17 326.10 1013.05 

R209 8 700.04 750.02  17 346.58 1023.29 

R210 9 757.94 828.97  17 363.70 1031.85 

R211 8 711.84 755.92  17 347.08 1023.54 

 

TABLE VI 

THE RESULTS OF C TYPE INSTANCES BETWEEN URP-RC AND URP 

Inst. 
URP-RC  URP 

m TT Obj  m TT Obj 

C101 16 1265.20 1432.60  34 590.26 1995.13 

C102 16 1185.14 1392.57  34 498.62 1949.31 

C103 15 1196.60 1348.30  33 469.40 1884.70 

C104 15 1032.52 1266.26  33 460.42 1880.21 

C105 15 1089.52 1294.76  34 504.06 1952.03 

C106 16 1049.12 1324.56  34 509.76 1954.88 

C107 15 1100.66 1300.33  34 468.62 1934.31 

C108 14 1013.96 1206.98  34 481.62 1940.81 

C109 14 1040.26 1220.13  33 460.00 1880.00 

C201 6 285.66 442.83  10 126.58 563.29 

C202 6 233.06 416.53  10 97.76 548.88 

C203 5 255.76 377.88  10 78.18 539.09 

C204 5 257.16 378.58  10 77.50 538.75 

C205 5 271.46 385.73  10 91.24 545.62 

C206 5 241.04 370.52  10 70.80 535.40 

C207 5 247.16 373.58  10 74.36 537.18 

C208 5 241.82 370.91  9 71.72 485.86 

causes the objective function value is smaller in general. And 

the results of RC type instances in TABLE VII shows that URP-

RC performs better for each aspect of the objective than URP. 

From TABLE V-VII, we can see that URP-RC obtained 

better solution with much lesser number of UAVs and smaller 

objective function values for all the instances compared to URP. 

Therefore, the recharging strategy does improve the efficiency 

and reduce the cost of UAVs. 

 

D. Sensitivity analysis on the battery capacity 

The battery capacity plays a key role in the UAV routing 

problem. In order to analyze the impact of different battery 

capacities, we vary the value of battery capacity from 120 to 

300 while the value of other parameters keep unchanged. The 

number of UAVs (m) and the overall mission time (TT) are 

calculated under different battery capacities respectively by 

ALNS. Also, we compared the impact of battery capacities 

between URP-RC and URP. The results for R101 instance are 

reported in Fig. 6. The experimental results on other instances 

are similar, and the parallel analysis on the other instances are 

omitted here. 
TABLE VII 

THE RESULTS OF RC TYPE INSTANCES BETWEEN URP-RC AND URP 

Inst. 
URP-RC  URP 

m TT Obj  m TT Obj 

RC101 20 3086.26 2801.74  41 3646.58 3873.29 

RC102 19 2836.84 2559.44  39 3410.76 3655.38 

RC103 18 2492.08 2536.54  37 3171.60 3435.80 

RC104 15 2203.28 2231.74  37 3075.14 3387.57 

RC105 20 2675.84 2665.50  38 3318.66 3559.33 

RC106 19 2527.52 2527.76  38 3259.80 3529.90 

RC107 16 2318.62 2150.62  37 3171.94 3435.97 

RC108 15 2154.04 2056.74  37 3100.46 3400.23 

RC201 5 755.06 660.02  8 586.24 693.12 

RC202 4 635.46 581.48  8 463.18 631.59 

RC203 4 501.52 507.82  8 405.58 602.79 

RC204 4 397.42 363.34  7 302.74 501.37 

RC205 5 554.12 517.18  8 420.44 610.22 

RC206 4 528.28 484.68  7 410.08 555.04 

RC207 4 467.96 456.04  7 300.22 500.11 

RC208 4 383.68 338.62  6 248.86 424.43 

 

From Fig. 6(a), it can be observed that the number of UAVs 

decreases sharply with the increase of battery capacity in URP 

and comparatively decreases gently in URP-RC. When the 

battery capacity is 120, the deviation of the number of UAVs 

between URP-RC and URP reaches 30 which verifies that 

URP-RC can significantly reduce the fixed cost of UAVs 

especially for the small UAVs with short endurance range. With 

the increase of battery capacity, the deviation between URP-RC 

and URP becomes small and reaches 0 when the capacity is 300. 

That is because the UAVs can complete the task without 

recharging when the battery capacity is large enough. Similarly, 

the results in Fig.6(b) showed that the overall mission time 

decreases as the battery capacity increases, and becomes the 

same for both URP-RC and URP when the battery capacity is 

large enough. Since the targets have specific time windows in 
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both URP-RC and URP, when the UAV arrives earlier than the 

earliest reconnaissance start time, it has to wait for some time. 

Therefore, the relatively deviation of the overall mission time 

between URP-RC and URP is smaller than that for the number 

of UAVs in Fig. 6(a). 

The results in Fig. 6 confirm that the battery capacity does 

has an important impact on the routing of UAVs, and indicate 

that recharging is efficient to improve small UAVs’ routing 

performance when the battery capacity is not large enough. 

 

 
(a) 

 
(b) 

Fig. 6. The results for R101 instance under different battery capacities. (a) The 

number of UAVs under different battery capacities. (b) Total mission time 
under different battery capacities. 

 

VI. CONCLUSION 

To promote the utilization of small UAVs, we investigated a 

UAV routing problem with recharging to extend the endurance 

range of small UAVs, where the recharging platforms are fixed 

and UAV can fly to these recharging platforms to recharge its 

battery in the route. To solve this problem, a mixed integer 

nonlinear programming model is established and an improved 

ALNS algorithm embedded with a recharging platform 

insertion heuristic is designed. Furthermore, we create a set of 

benchmark instances based on the well-known Solomon dataset 

and the experiment results showed that the proposed ALNS 

performs significantly better than the ACO and VNS algorithm. 

Besides, the advantage of recharging strategy is verified and the 

sensitivity analysis on the battery capacity shows that the 

battery capacity effect both the number of UAVs and the 

objective values in URP-RC and URP. 

To extend the proposed study, future research directions can 

be taken into consideration for the problem in a dynamic 

environment where the recharging platforms are mobile and has 

time windows as well. In many practical applications, the 

recharging platforms are mobile, such as public transport, 

which has recharging capacity and time window. Thus, it is a 

meaningful and valuable extension in the model development. 

Another meaningful extension is studying new algorithms to 

solve this problem more efficiently and quickly.  
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