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Abstract

This paper discusses the properties the spaces of fuzzy sets in a metric s-
pace equipped with the endograph metric and the sendograph metric, re-
spectively. We fist discuss the level characterizations of the Γ-convergence
and the endograph metric, and point out the elementary relationships among
Γ-convergence, endograph metric and the sendograph metric. On the basis
of these results, we present the characterizations of total boundedness, rel-
ative compactness and compactness in the space of compact positive α-cuts
fuzzy sets equipped with the endograph metric, and in the space of com-
pact support fuzzy sets equipped with the sendograph metric, respectively.
Furthermore, we give completions of these two kinds of spaces, respectively.

Keywords: Endograph metric; Sendograph metric; Hausdorff metric; Total
boundedness; Relative compactness; Compactness; Completion

0. Basic notions

In this section, we recall some basic notions related to fuzzy sets and con-
vergence structures on them which will be discussed in this paper. Readers
can refer to [2, 22] for more contents.

Let (X, d) be a metric space and let K(X) and C(X) denote the set of all
non-empty compact subsets of X and the set of all non-empty closed subsets
of X, respectively.

Let F (X) denote the set of all fuzzy sets in X. A fuzzy set u ∈ F (X)
can be seen as a function u : X → [0, 1]. In this sense, a subset S of X can
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be seen as a fuzzy set SF (X) in X

SF (X)(x) =

{
1, x ∈ S,
0, x ∈ X \ S.

For x ∈ X, we use x̂X to denote the fuzzy set {x}F (X) in X. If there is
no confusion, we will write x̂X as x̂ for simplicity.

For u ∈ F (X), let [u]α denote the α-cut of u, i.e.

[u]α =

{
{x ∈ X : u(x) ≥ α}, α ∈ (0, 1],

suppu = {u > 0}, α = 0,

where S denotes the closure of S in (X, d).
For u ∈ F (X), define

endu := {(x, t) ∈ X × [0, 1] : u(x) ≥ t},
sendu := {(x, t) ∈ X × [0, 1] : u(x) ≥ t} ∩ ([u]0 × [0, 1]).

endu and sendu are called the endograph and the sendograph of u, respec-
tively.

Let FUSC(X) denote the set of all normal and upper semi-continuous
fuzzy sets u : X → [0, 1], i.e.,

FUSC(X) := {u ∈ F (X) : [u]α ∈ C(X) for all α ∈ [0, 1]}.

We introduce some subclasses of FUSC(X), which will be discussed in this
paper. Define

FUSCB(X) := {u ∈ FUSC(X) : [u]0 ∈ K(X)},
FUSCG(X) := {u ∈ FUSC(X) : [u]α ∈ K(X) for all α ∈ (0, 1]}.

Clearly,
FUSCB(X) ⊆ FUSCG(X) ⊆ FUSC(X).

Let Rm be the m-dimensional Euclidean space. The set of (compact)
fuzzy numbers are denoted by Em. It is defined as

Em := {u ∈ FUSCB(Rm) : [u]α is a convex subset of Rm for α ∈ [0, 1]}.

Fuzzy numbers have attracted much attention from theoretical research and
practical applications [1, 2, 5, 8, 20, 22].

2

ch
in

aX
iv

:2
02

10
7.

00
01

1v
3



Let (X, d) be a metric space. We use H to denote the Hausdorff metric
on C(X) induced by d, i.e.,

H(U,V ) = max{H∗(U, V ), H∗(V, U)}

for arbitrary U, V ∈ C(X), where

H∗(U, V ) = sup
u∈U

d (u, V ) = sup
u∈U

inf
v∈V

d (u, v).

The metric d on X × [0, 1] is defined as

d((x, α), (y, β)) = d(x, y) + |α− β|.

If there is no confusion, we also use H to denote the Hausdorff metric on
C(X × [0, 1]) induced by d.

We say that a sequence of sets {Cn} Kuratowski converges to C ⊆ X,
if

C = lim inf
n→∞

Cn = lim sup
n→∞

Cn,

where

lim inf
n→∞

Cn = {x ∈ X : x = lim
n→∞

xn, xn ∈ Cn},

lim sup
n→∞

Cn = {x ∈ X : x = lim
j→∞

xnj
, xnj

∈ Cnj
} =

∞⋂
n=1

⋃
m≥n

Cm.

In this case, we’ll write C = limn→∞Cn(Kuratowski) or C = limn→∞Cn(K)
for simplicity.

Rojas-Medar and Román-Flores [17] have introduced the Γ-convergence
on FUSC(X):

Let u, un, n = 1, 2, . . ., be fuzzy sets in FUSC(X). Then un Γ-converges

to u (un
Γ−→ u) if

endu = lim
n→∞

endun (K).

Let (X, d) be a metric space and let u ∈ F(X). Then

u is upper semi-continuous

⇔ endu is closed in (X × [0, 1], d)

⇔ sendu is closed in (X × [0, 1], d).
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The endograph metric Hend and the sendograph metric Hsend can be de-
fined on FUSC(X) as usual. For u, v ∈ FUSC(X),

Hend(u, v) := H(endu, end v),

Hsend(u, v) := H(sendu, send v).

The endograph metric Hend and the sendograph metric Hsend are defined
by using the Hausdorff metric on C(X × [0, 1]) induced by d on X × [0, 1].

1. Introduction

A fuzzy set can be identified with its endograph. Also, a fuzzy set can
be identified with its sendograph. So convergence structures on fuzzy sets
can be defined on their endographs or sendographs. The Γ-convergence,
the endograph metric Hend and the sendograh metric Hsend are this kind
of convergence structures. In this paper, we discuss the properties and the
relations of these three convergence structures.

Compactness is one of the central concepts in topology and analysis and
useful in applications (see [14, 21]). There is a lot of work devoted to charac-
terizations of compactness in various fuzzy set spaces endowed with different
topologies [3, 6, 7, 9, 10, 18, 19, 23].

The endograph metric is shown to has significant advantages [15, 16]. In
[10], we presented the level characterizations of the Γ-convergence and the
endograph metric Hend. Based on this, we have given the characterizations of
total boundedness, relative compactness and compactness of fuzzy set spaces
equipped with the endograph metric.

The results in [10] are obtained on the realm of fuzzy sets in Rm. Rm is
a special type of metric space. Of course, it is worth to study the fuzzy sets
in metric space [6, 7, 13].

In this paper, we first discuss the level characterizations of the Γ-convergence
and the endograph metric Hend on fuzzy sets in FUSC(X). Based on this,
we give the characterizations of total boundedness, relative compactness
and compactness in (FUSCG(X), Hend) and (FUSCB(X), Hend), repectively.
Here we mention that the characterization of relatively compact sets in
(FUSCB(X), Hsend) has already been given by Greco [6].

It is natural to consider what is a completion of a metric space. In this
paper, we construct a completion of (FUSCB(X), Hsend) and give a completion
of (FUSCG(X), Hend), which is also a completion of (FUSCB(X), Hend).
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The remainder of this paper is organized as follows. In Section 2, we give
elementary relationship among the Γ-convergence, the endograph metric and
the sendoragraph metric. In Section 3, we investigate the level character-
izations of the Γ-convergence. In Section 4, we consider the level charac-
terizations of the endograph metric convergence. In Section 5, on the basis
of the conclusions in previous sections, we give characterizations of total
boundedness, relative compactness and compactness in (FUSCG(X), Hend)
and (FUSCB(X), Hsend), respectively. In Section 6, we give completions of
(FUSCG(X), Hend) and (FUSCB(X), Hsend), respectively. At last, we draw the
conclusions in Section 7.

2. Elementary relationship among Γ-convergence, Hend and Hsend

In this section, we give some conclusions which are useful in this paper.
From some of these conclusions, we can obtain elementary relationship among
Γ-convergence, Hend and Hsend.

Theorem 2.1. Suppose that C, Cn are sets in C(X), n = 1, 2, . . .. Then
H(Cn, C)→ 0 implies that limn→∞Cn (K) = C.

Proof. This is an already known result. Its proof is similar to that of The-
orem 4.1 in [10].

From Theorem 2.1, we know that if Hend(un, u) → 0, then un
Γ−→ u for

u, un, n = 1, 2, . . . in FUSC(X).

Proposition 2.2. Given u, un, n = 1, 2, . . . in FUSC(X). Then

(i) Hsend(un, u)→ 0 is equivalent to Hend(un, u)→ 0 and H([un]0, [u]0)→
0

(ii) limn→∞ sendun(K) = sendu is equivalent to un
Γ−→ u and limn→∞[un]0(K) =

[u]0

The Hausdorff metric has the following important properties.

Theorem 2.3. [18] Let (X, d) be a metric space and let H be the Hausdorff
metric induced by d. Then the following statements are true.
(i) (X, d) is complete ⇐⇒ (K(X), H) is complete.
(ii) (X, d) is separable ⇐⇒ (K(X), H) is separable.
(iii) (X, d) is compact ⇐⇒ (K(X), H) is compact.
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3. Level characterizations of Γ-convergence

In this section, we investigate the level characterizations of the Γ-convergence.
It is found that the Γ-convergence has the level decomposition property on
FUSCG(X), fuzzy sets in which has compact positive α-cuts. It is pointed
out that the Γ-convergence need not have the level decomposition property
on FUSC(X).

Rojas-Medar and Román-Flores [17] have introduced the following useful
property of Γ-convergence.

Theorem 3.1. [17] Suppose that u, un, n = 1, 2, . . ., are fuzzy sets in

FUSC(X). Then un
Γ−→ u iff for all α ∈ (0, 1],

{u > α} ⊆ lim inf
n→∞

[un]α ⊆ lim sup
n→∞

[un]α ⊆ [u]α. (1)

Remark 3.2. Rojas-Medar and Román-Flores (Proposition 3.5 in [17]) pre-
sented the statement in Proposition 3.1 when u, un, n = 1, 2, . . ., are fuzzy
sets in Em. It can be checked that this conclusion also holds when u, un,
n = 1, 2, . . ., are fuzzy sets in FUSC(X).

Theorem 3.3. [10] Let (X, d) be a metric space and let {Cn} be a sequence
of sets in X. Then lim infn→∞Cn and lim supn→∞Cn are closed sets.

Theorem 3.4. Suppose that u, un, n = 1, 2, . . ., are fuzzy sets in FUSC(X).

Then un
Γ−→ u iff for all α ∈ (0, 1],

{u > α} ⊆ lim inf
n→∞

[un]α ⊆ lim sup
n→∞

[un]α ⊆ [u]α.

Remark 3.5. Clearly, if un
Γ−→ u, then [u]0 = {u > 0} ⊆ lim infn→∞[un]0,

and that [u]0 $ lim infn→∞[un]0 could happen. By Proposition 2.2, un
Γ−→ u

and [u]0 ⊇ lim supn→∞[un]0 if and only if limn→∞ sendun(K) = sendu.

Lemma 3.6. [11] Let Un ∈ K(X) for n = 1, 2, . . ..
(i) If U1 ⊇ U2 ⊇ . . . ⊇ Un ⊇ . . ., then

⋂+∞
n=1 Un ∈ K(X) and H(Un, U) → 0

as n→ +∞.
(ii) If U1 ⊆ U2 ⊆ . . . ⊆ Un ⊆ . . . and U =

⋃+∞
n=1 Un ∈ K(X), then

H(Un, U)→ 0 as n→ +∞.
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Proof. This is Lemma 4.4 in [11]. Here we give a proof using Theorem 2.3.
We only show (ii). (i) can be shown in a similar way.

Since Un ∈ K(U), then by Theorem 2.3, Un has a subsequence which
converges to C ∈ K(U). Then clearly H(Un, C)→ 0, and thus by Theorem
2.1, C = U .

Let u be a fuzzy set in FUSC(X). Denote

• P (u) := {α ∈ (0, 1) : {u > α} $ [u]α}.

• P0(u) := {α ∈ (0, 1) : limβ→αH([u]β, [u]α) 6= 0}.

A number α in P (u) is called a platform point of u. Clearly, P (u) ⊆ P0(u).
P (u) $ P0(u) could happen. Consider u ∈ FUSC(R2) given by

[u]α = {z : arg z ∈ [α, 1]} ∪ {0} for each α ∈ [0, 1]

where we write each (x, y) ∈ R2 as a complex number z = x + iy. Then
P (u) = ∅ and P0(u) = (0, 1).

From Lemma 3.6, we can obtain that P (u) = P0(u) for u ∈ FUSCG(X).
Combined with Lemma 6.12 in [11], we obtain the following conclusion

Lemma 3.7. Given u ∈ FUSCG(X). Then P0(u) = P (u) and P (u) is at
most countable.

Theorem 3.8. Suppose that u, un, n = 1, 2, . . ., are fuzzy sets in FUSC(X).
Then the following statements are true.

(i) If [u]α = limn→∞[un]α (K) for α ∈ P , where P is a dense set in (0, 1),

then un
Γ−→ u.

(ii) If un
Γ−→ u, then [u]α = limn→∞[un]α (K) for all α ∈ (0, 1) \ P (u).

Proof. The proof of (i) is similar to “(ii)⇒ (i)” in the proof of Theorem 6.2
in [10]. (ii) follows immediately from Theorem 3.4.

The following theorem states the level decomposition property of Γ-convergence
on FUSCG(X).

Theorem 3.9. Suppose that u, un, n = 1, 2, . . ., are fuzzy sets in FUSCG(X).
Then the following statements are true.
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(i) un
Γ−→ u

(ii) un
a.e.−→ u (K).

(iii) [u]α = limn→∞[un]α (K) for all α ∈ (0, 1) \ P (u)

(iv) limn→∞[un]α (K) = [u]α holds when α ∈ P , where P is a dense subset
of (0, 1)\P (u).

(v) limn→∞[un]α (K) = [u]α holds when α ∈ P , where P is a countable
dense subset of (0, 1)\P (u)

Proof. The desired results follow immediately from Lemma 3.7 and Theorem
3.8.

Remark 3.10. It can be checked that the level decomposition property of
Γ-convergence need not hold on FUSC(X).

4. Level characterizations of endograph metric convergence

In this section, we discuss the level characterizations of endograph metric
convergence.

Theorem 4.1. Let u, un, n = 1, 2, . . ., be fuzzy sets in FUSC(X) and let P
be a dense subset of [0, 1]. Suppose that H([un]α, [u]α) → 0 for each α ∈ P .
Then Hend(un, u)→ 0.

Proof. We proceed by contradiction. If Hend(un, u) 6→ 0, then there is an
ε > 0 such that Hend(unk

, u) > ε for a subsequence {unk
} of {un}.

SupposeH∗(endunk
, endu) > ε. Then there exists a sequence (xnk

, αnk
) ∈

endunk
such that

d((xnk
, αnk

), endu) > ε. (2)

With no loss of generality we can assume αnk
→ α ≥ ε. Pick β ∈ P satisfying

α ∈ (β, β + ε/2). Then there exists K such that αnk
∈ (β, β + ε/2) for all

k ≥ K. Thus for each k ≥ K,

d((xnk
, αnk

), endu)

≤ d((xnk
, β), endu) + ε/2

≤ H([unk
]β, [u]β) + ε/2 (3)
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Note that H([unk
]β, [u]β) → 0, thus (2) contradicts (3). So the supposition

is false.
Suppose H∗(endu, endunk

) > ε. Then similarly we can derive a contra-
diction.

Remark 4.2. Fan (Lemma 1 in [4]) proved a result of Theorem 4.1 type.

Theorem 4.3. Let u, un, n = 1, 2, . . ., be fuzzy sets in FUSC(X). Suppose
that Hend(un, u)→ 0. Then H([un]α, [u]α)→ 0 for each α ∈ (0, 1) \ P0(u)

Proof. Let α ∈ (0, 1) \ P0(u). Given ε > 0. Then there exists a δ(α, ε) ∈
(0, ε/2) such that [α− δ, α + δ] ⊂ [0, 1] and

H([u]β, [u]α) < ε/2 (4)

for all β ∈ [α− δ, α + δ].
From Hend(un, u)→ 0, there exists an N(δ) such that

Hend(un, u) < δ (5)

for all n ≥ N . Thus

H∗([un]α, [u]α−δ) < δ < ε/2.

So, for each n ≥ N ,

H∗([un]α, [u]α)

≤ H∗([un]α, [u]α−δ) +H([u]α, [u]α−δ)

< ε/2 + ε/2 = ε (6)

Similarly, it follows from (5) that

H∗([u]α+δ, [un]α) < δ < ε/2,

and then, for each n ≥ N ,

H∗([u]α, [un]α)

≤ H([u]α, [u]α+δ) +H∗([u]α+δ, [un]α)

< ε/2 + ε/2 = ε. (7)

Combined with (6) and (7),

H([u]α, [un]α)→ 0.
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The following theorem gives the level decomposition property of Hend on
FUSCG(X).

Theorem 4.4. Suppose that u, un, n = 1, 2, . . ., are fuzzy sets in FUSCG(X).
Then the following statements are equivalent.

(i) Hend(un, u)→ 0

(ii) H([un]α, [u]α)
a.e.−→ 0

(iii) H([un]α, [u]α)→ 0 for all α ∈ (0, 1) \ P0(u)

(iv) H([un]α, [u]α)→ 0 when α ∈ P , where P is a dense subset of (0, 1)\P0(u)

(v) H([un]α, [u]α) → 0 when α ∈ P , where P is a countable dense subset
of (0, 1)\P0(u)

Proof. The desired result follows from Lemma 3.7 and Theorems 4.1 and
4.3.

Remark 4.5. It can be checked that the level decomposition property of
Hend convergence need not hold on FUSC(X).

5. Characterizations of compactness in (FUSCG(X),Hend) and (FUSCB(X),Hsend)

Based on the conclusions in previous sections, we give characterizations of
total boundedness, relative compactness and compactness in (FUSCG(X), Hend)
and (FUSCB(X), Hsend).

We use (X̃, d̃) to denote the completion of (X, d). We see (X, d) as a

subspace of (X̃, d̃). Let S ⊆ X̃. The symbol S̃ is used to denote the closure

of S in (X̃, d̃).

As defined in Section 2, we have K(X̃), C(X̃), FUSC(X̃), FUSCG(X̃), etc.

according to (X̃, d̃). For example,

FUSC(X̃) := {u ∈ F (X̃) : [u]α ∈ C(X̃) for all α ∈ [0, 1]},
FUSCG(X̃) := {u ∈ F (X̃) : [u]α ∈ K(X̃) for all α ∈ (0, 1]}.

If there is no confusion, we also use H to denote the Hausdorff metric
on C(X̃) induced by d̃. We also use H to denote the Hausdorff metric on
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C(X̃× [0, 1]) induced by d̃. We also use Hend to denote the endograph metric

on FUSC(X̃) given by using H on C(X̃ × [0, 1]).
Clearly, the induced metric on FUSCG(X) by the Hend on FUSC(X) is the

same as the induced metric on FUSCG(X) by the Hend on FUSC(X̃).

We see (FUSCG(X), Hend) as a subspace of (FUSCG(X̃), Hend).

5.1. Characterizations of compactness in (K(X), H)

In this subsection, we give characterizations of total boundedness, relative
compactness and compactness in (K(X), H). The results in this subsection
are basis for contents in the sequel.

Theorem 5.1. Suppose that (X, d) is complete and that {Cn} is a Cauchy

sequence in (K(X), H). Let Dn =
⋃n
l=1Cl and D =

⋃+∞
l=1 Cl. Then D ∈

K(X) and H(Dn, D)→ 0.

Proof. Note that for k > j,

H(Dk, Dj) ≤ max{H(Ci, Cj) : i = j + 1, . . . , k}.

So {Dn} is a Cauchy sequence in (K(X), H). From Theorem 2.3, (K(X), H)
is complete, and thus {Dn} converges to D ∈ K(X).

Theorem 5.2. Suppose that (X, d) is a metric space and that D ⊆ K(X).
Then D is totally bounded in (K(X), H) is equivalent to D =

⋃
{C : C ∈ D}

is totally bounded in (X, d).

Proof. If D = ∅, then the desired result follows immediately. Suppose that
D 6= ∅.

Necessity . To show that D is totally bounded. We only need to show
that each sequence in D has a Cauchy subsequence.

Given a sequence {xn} in D. Suppose that xn ∈ Cn ∈ D. Since D is
totally bounded, then {Cn} has a Cauchy subsequence {Cnk

}. Hence, by

Theorem 5.1,
˜⋃+∞
k=1Cnk

is in K(X̃). Thus {xn} has a Cauchy subsequence.

Sufficiency . If D is totally bounded in X, then D̃ is in K(X̃). So, by

Theorem 2.3, (K(D̃), H) is compact, and thus D is totally bounded.

Theorem 5.3. Suppose that (X, d) is a metric space and that D ⊆ K(X).
Then D is relatively compact in (K(X), H) is equivalent to D =

⋃
{C : C ∈

D} is relatively compact in (X, d).
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Proof. If D = ∅, then the desired result follows immediately. Suppose that
D 6= ∅.

Necessity . To show that D is relatively compact. We only need to
show that each sequence in D has a convergent subsequence in X.

Given a sequence {xn} in D. Suppose that xn ∈ Cn ∈ D. Since D is
relatively compact, then {Cn} has a subsequence {Cnk

} converges to C in

K(X). Hence, by Theorem 5.1,
˜⋃+∞
k=1Cnk

is in K(X̃) (In fact,
˜⋃+∞
k=1 Cnk

is in

K(X)). So {xnk
} has a subsequence which converges to x in

˜⋃+∞
k=1Cnk

, and
thus x ∈ C ⊂ X.

Sufficiency . If D is relatively compact in X, then D is in K(X), and
therefore (K(D), H) is compact. Thus D ⊂ K(D) is relatively compact in
(K(X), H).

Lemma 5.4. Suppose that (X, d) is a metric space and that D ⊆ K(X). If
D is compact in (K(X), H), then D =

⋃
{C : C ∈ D} is compact in (X, d)

Proof. If D = ∅, then the desired result follows immediately. Suppose that
D 6= ∅. To show that D is compact. We only need to show that each sequence
in D has a subsequence converges to a point in D.

Given a sequence {xn} in D. Suppose that xn ∈ Cn ∈ D. Since D is
compact, then {Cn} has a subsequence {Cnk

} converges to C ∈ D. Hence, by

Theorem 5.1,
˜⋃+∞
k=1Cnk

is in K(X̃) (In fact,
˜⋃+∞
k=1Cnk

is in K(D)). So {xnk
}

has a subsequence which converges to x in
˜⋃+∞
k=1 Cnk

. Thus x ∈ C ⊂ D.

Remark 5.5. The converse of the implication in Lemma 5.4 does not hold.
Let (X, d) = R and let D = {[0, x] : x ∈ (0.3, 1]} ⊂ K(R). Then D = [0, 1] ∈
K(R). But D is not compact in (K(R), H).

Theorem 5.6. Suppose that (X, d) is a metric space and that D ⊆ K(X).
Then the following statements are equivalent.
(i) D is compact in (K(X), H)
(ii) D =

⋃
{C : C ∈ D} is relatively compact in (X, d) and D is closed in

(K(X), H)
(iii) D =

⋃
{C : C ∈ D} is compact in (X, d) and D is closed in (K(X), H).

Proof. The desired result follows from Theorem 5.3 and Lemma 5.4.
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Remark 5.7. After we gave conclusions and their proofs in this section, we
find Theorem 5.3 is Proposition 5 in [6]. Since we can’t find the proof of
Proposition 5, we give our proof here.

5.2. Characterizations of compactness in (FUSCG(X), Hend)

In this subsection, we give characterizations of total boundedness, relative
compactness and compactness in (FUSCG(X), Hend).

Suppose that U is a subset of FUSC(X) and α ∈ [0, 1]. For writing
convenience, we denote

• U(α) :=
⋃
u∈U [u]α, and

• Uα := {[u]α : u ∈ U}.

Theorem 5.8. Let U be a subset of FUSCG(X). Then U is totally bounded
in (FUSCG(X), Hend) if and only if U(α) is totally bounded in (X, d) for each
α ∈ (0, 1]

Proof. Necessity . Suppose that U is totally bounded in (FUSCG(X), Hend).
To show that U(α) is totally bounded in X, we only need to show that each
sequence in U(α) has a Cauchy subsequence.

Let α ∈ (0, 1]. Given {xn} ⊂ U(α). Suppose that xn ∈ [un]α, un ∈ U ,
n = 1, 2, . . .. Then {un} has a Cauchy subsequence {unk

}. So given ε ∈ (0, α),
there is a K(ε) ∈ N such that

Hend(unl
, unK

) < ε

for all l ≥ K. Thus
H∗([unl

]α, [unK
]α−ε) < ε (8)

for all l ≥ K. From (8) and the arbitrariness of ε,
⋃+∞
k=1[unk

]α is totally
bounded in X. Thus {xnk

} has a Cauchy subsequence, and so does {xn}.
Sufficiency . Suppose that U(α) is totally bounded in X for each α ∈

(0, 1]. By Theorem 5.2, U(α) is totally bounded in X is equivalent to Uα is
totally bounded in (K(X), H). Thus, by Theorem 2.3, we have the following
affirmation

• Given α ∈ (0, 1]. For each sequence {[un]α, n = 1, 2, . . .} in Uα, it has a

subsequence {[unk
]α, k = 1, 2, . . .} which converges to uα ∈ K(X̃) with

respect to the Hausdorff metric H.
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To prove that U is totally bounded, it suffices to show that each sequence
in U has a convergent subsequence in (FUSCG(X̃), Hend). Suppose that {un}
is a sequence in U . Based on the above affirmation and Theorem 4.4, and
proceeding similarly to the proof of the “Sufficiency part” of Theorem 7.1 in
[10], it can be shown that {un} has a subsequence {vn} which converges to

v ∈ FUSCG(X̃) with respect to Hend.
A sketch of the proof of the existence of {vn} and v is given as follows.
First, we construct a subsequence {vn} of {un} such that [vn]q converges

to uq ∈ K(X̃) according to the Hausdorff metric H for all q ∈ Q′, where

Q′ = Q ∩ (0, 1]. Then we show that v ∈ FUSCG(X̃) with [v]α =
⋂
q<α,q∈Q′ uq

for all α ∈ (0, 1] satisfies that Hend(vn, v)→ 0.

Remark 5.9. Some of the implications in the proofs of this paper are actually
the equivalent. For example, in the proof of Theorem 5.8, U(α) is totally
bounded in X for each α ∈ (0, 1] is equivalent to the affirmation after the
“•”
Theorem 5.10. Let U be a subset of FUSCG(X). Then U is relatively com-
pact in (FUSCG(X), Hend) if and only if U(α) is relatively compact in (X, d)
for each α ∈ (0, 1].

Proof. Necessity . Suppose that U is relatively compact. Given α ∈ (0, 1].
To show that U(α) is relatively compact in X, we only need to show that
each sequence in U(α) has a convergent subsequence in X.

Let {xn} be a sequence in U(α). Suppose that xn ∈ [un]α, un ∈ U ,
n = 1, 2, . . .. Then there is a subsequence {unk

} of {un} and u ∈ FUSCG(X)

such that Hend(unk
, u) → 0. So, by Theorem 4.4, H([unk

]α, [u]α)
a.e.−→ 0,

and therefore there is a β ∈ (0, α) such that H([unk
]β, [u]β) → 0. Hence

by Theorem 5.3,
⋃+∞
k=1[unk

]β is relatively compact in X. Thus {xnk
} has a

convergent subsequence in X, and so does {xn}.
Sufficiency. Suppose that U(α) is relatively compact in X for each

α ∈ (0, 1]. To show that U is relatively compact in (FUSCG(X), Hend), we
only need to show that each sequence in U has a convergent subsequence in
(FUSCG(X), Hend).

By Theorem 5.3, U(α) is relatively compact in X is equivalent to Uα is
relatively compact in K(X). Thus, we have the following affirmation

• Given α ∈ (0, 1]. For each sequence {[un]α, n = 1, 2, . . .} in Uα, it has a
subsequence {[unk

]α, k = 1, 2, . . .} which converges to uα ∈ K(X) with
respect to the Hausdorff metric H.
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The remaining proof is similar to the corresponding part of the “Sufficiency
part” of Theorem 5.8.

We can also prove that U is relatively compact in (FUSCG(X), Hend) as
follows. From the “Sufficiency part” of Theorem 5.8, we know that for each
sequence {un} in U , there exists a subsequence {vn} of {un} which converges

to v ∈ FUSCG(X̃). From Theorem 4.4 and the above statement after the “•”,
we thus know that v ∈ FUSCG(X).

Theorem 5.11. Let U be a subset of FUSCG(X). Then the following state-
ments are equivalent.

(i) U is compact in (FUSCG(X), Hend)

(ii) U(α) is relatively compact in (X, d) for each α ∈ (0, 1] and U is closed
in (FUSCG(X), Hend)

(iii) U(α) is compact in (X, d) for each α ∈ (0, 1] and U is closed in
(FUSCG(X), Hend)

Proof. The equivalence of statements (i) and (ii) follows immediately from
Theorem 5.10. Obviously statement (iii) implies statement (ii).

Now we prove that statement (i) implies statement (iii). Suppose that U
is compact. To show that U(α) is compact, we only need to show that U(α)
is closed.

Let {xn} be a sequence in U(α) with xn → x. Suppose that xn ∈ [un]α
and un ∈ U for n = 1, 2, . . .. Then there exist subsequence {unk

} of {un}
and u ∈ U such that Hend(unk

, u) → 0. By Theorems 2.1 and 3.4, we have
that lim supn→∞[unk

]α ⊆ [u]α. Hence x ∈ [u]α, and thus x ∈ U(α).

We can also obtain that x ∈ [u]α from the fact that H([unk
]α, [u]α)

a.e.−→ 0.

5.3. Characterizations of compactness in (FUSCB(X), Hsend)

In this subsection, we give the characterizations of totally bounded sets,
and compact sets in (FUSCB(X), Hsend). The characterization of relatively
compact sets in (FUSCB(X), Hsend) has already been given in [6].

We introduce PUSC(X) and PUSCB(X) which are subsets of X × [0, 1].

PUSC(X) := {u ⊆ X × [0, 1] : 〈u〉α =
⋂
β<α

〈u〉β for all α ∈ (0, 1];

〈u〉α ∈ C(X) for all α ∈ [0, 1]},
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PUSCB(X) := {u ∈ PUSC(X) : 〈u〉α ∈ K(X) for all α ∈ [0, 1]},

where 〈u〉α := {x : (x, α) ∈ u} for u ⊆ X × [0, 1] and α ∈ [0, 1].
It can be checked that if u ∈ PUSC(X) then u ∈ C(X × [0, 1]), and that

if u ∈ PUSCB(X) then u ∈ K(X × [0, 1]).
It can also be checked that if u ∈ C(X × [0, 1]), then 〈u〉α ∈ C(X) for all

α ∈ [0, 1], and that if u ∈ K(X × [0, 1]), then 〈u〉α ∈ K(X) for all α ∈ [0, 1].
So we can write

PUSC(X) = {u ∈ C(X × [0, 1]) : 〈u〉α =
⋂
β<α

〈u〉β for all α ∈ (0, 1]},

PUSCB(X) = {u ∈ PUSC(X) : u ∈ K(X × [0, 1])}.

We can formally define Hsend and Hend on PUSC(X)

Hsend(u, v) := H(u, v),

Hend(u, v) := H(u, v),

where u := u ∪ (X × {0}). Clearly, Hsend is a metric on PUSC(X). However,
Hend need not be a metric on PUSC(X).

Consider the function f : FUSC(X) → PUSC(X) given by f(u) = sendu.
Then

• f is an isometric embedding of (FUSC(X), Hsend) in (PUSC(X), Hsend).

• f |FUSCB(X) is an isometric embedding of (FUSCB(X), Hsend) in (PUSCB(X), Hsend).

Remark 5.12. Clearly, from the above observation, it is natural to discuss
the properties of (FUSCB(X), Hsend) by treating (FUSCB(X), Hsend) as a sub-
space of (PUSCB(X), Hsend), which is a subspace of (K(X × [0, 1]), H).

Obviously, we can think of each u ∈ FUSCG(X) as its endograph, and we
can also discuss the properties of (FUSCG(X), Hend) by treating (FUSCG(X), Hend)
as a subspace of (C(X × [0, 1]), H).

For u ∈ FUSC(X), we use −→u to denote f(u).
For v ∈ PUSC(X), we use ←−v to denote f−1(v′), where v′ ∈ f(FUSC(X))

is given by

〈v′〉α =

{
〈v〉α, α ∈ (0, 1],

∪α>0〈v〉α, α = 0.
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Theorem 5.13. Let u be an element of PUSC(X) and {un} a sequence in
PUSC(X). Then Hsend(un, u)→ 0 iff Hend(un, u)→ 0 and H([un]0, [u]0)→ 0

Proof. Let u, v in PUSC(X). Then

Hend(u, v) ≤ Hsend(u, v), (9)

H([u]0, [v]0) ≤ Hsend(u, v). (10)

Thus Hsend(un, u)→ 0 implies that Hend(un, u)→ 0 and H([un]0, [u]0)→ 0.
Let (x, α) ∈ sendu. Clearly, d((x, α), send v) ≤ α + d(x, [v]0). If α >

d((x, α), end v), then d((x, α), send v) = d((x, α), end v). Hence

d((x, α), send v) ≤
{
Hend(u, v), α > Hend(u, v),
α +H([u]0, [v]0), α ∈ [0, 1].

Thus for u, v ∈ PUSC(X) with Hend(u, v) < 1

Hsend(u, v) ≤ Hend(u, v) +H([u]0, [v]0). (11)

(The “=” can be obtained in (11)). So Hend(un, u)→ 0 and H([un]0, [u]0)→
0 imply that Hsend(un, u)→ 0.

Theorem 5.14. Suppose that U is a subset of FUSCB(X). Then U is totally
bounded in (FUSCB(X), Hsend) if and only if U(0) is totally bounded in (X, d).

Proof. Necessity . Suppose that U is totally bounded. By (10), U0 is
totally bounded in (K(X), H). From Theorem 5.2, this is equivalent to U(0)
is totally bounded in (X, d).

Sufficiency . Suppose that U(0) is totally bounded. Then U(α) is
totally bounded for each α ∈ [0, 1]. To show that U is totally bounded in
(FUSCB(X), Hsend), we only need to prove that each sequence in U has a
Cauchy subsequence with respect to Hsend.

Let {un} be a sequence in U . Then by Theorem 5.8, {un} has a Cauchy
subsequence {vn} in (FUSCB(X), Hend). From Theorem 5.2, {vn} has a sub-
sequence {wn} such that {[wn]0} is a Cauchy sequence in (K(X), H). Thus
by (11), {wn} is a Cauchy sequence in (FUSCB(X), Hsend).

• u ∈ FUSC(X) is said to be right-continuous at 0 if for each ε > 0, there
is a δ > 0 such that H([u]δ, [u]0) < ε.
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• U ⊂ FUSC(X) is said to be equi-right-continuous at 0 if for each ε > 0,
there is a δ > 0 such that H([u]δ, [u]0) < ε for all u ∈ U .

By Lemma 3.6, for each u ∈ FUSCB(X), u is right-continuous at 0.

Theorem 5.15. [6] Suppose that U is a subset of FUSCB(X). Then U is rel-
atively compact in (FUSCB(X), Hsend) if and only if U(0) is relatively compact
in X and U is equi-right-continuous at 0.

Theorem 5.16. Suppose that U is a subset of FUSCB(X). Then the following
statements are equivalent.

(i) U is compact in (FUSCB(X), Hsend)

(ii) U is closed in (FUSCB(X), Hsend), U(0) is relatively compact in X and
U is equi-right-continuous at 0

(iii) U is closed in (FUSCB(X), Hsend), U(0) is compact in X and U is equi-
right-continuous at 0

Proof. The desired result follows immediately from Theorems 5.6 and 5.15.

6. Completions of (FUSCB(X),Hsend) and (FUSCG(X),Hend)

In this section, we show that (PUSCB(X̃), Hsend) is a completion of (FUSCB(X), Hsend).

We also show that (FUSCG(X̃), Hend) is a completion of (FUSCB(X), Hend),
and thus a completion of (FUSCG(X), Hend).

Theorem 6.1. Let (X, d) be a metric space. Then the following statements
are equivalent.

(i) (X, d) is complete.

(ii) (FUSCG(X), Hend) is complete.

Proof. (i) ⇒ (ii). Let {un} be a Cauchy sequence of (FUSCG(X), Hend).
Then U = {un, n = 1, 2, . . .} is total bounded in (FUSCG(X), Hend). So from
the proof the sufficiency part of Theorem 5.8, we know that {un} has a
convergent subsequence in (FUSCG(X), Hend), and thus {un} is convergent in
(FUSCG(X), Hend).
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(ii)⇒ (i). Let {xn} be a Cauchy sequence in X. Note that Hend(x̂, ŷ) =
min{d(x, y), 1} for x, y ∈ X. Then {x̂n} is a Cauchy sequence in (FUSCG(X), Hend),
and therefore {x̂n} converges to u ∈ FUSCG(X). Thus there exists an x ∈ X
such that [u]α = {x} for all α ∈ [0, 1] (i.e. u = x̂) and d(xn, x)→ 0.

It is easy to see that “(ii) ⇒ (i)” can also be proved as follows
(X, d) is complete if and only if (X, d∗) is complete, where d∗(x, y) =

min{d(x, y), 1} for x, y ∈ X. Note that Hend(x̂, ŷ) = d∗(x, y). So the desired
result follows from the fact that (X, d∗) is isometric to the closed subspace

(X̂,Hend) of (FUSCG(X), Hend), where X̂ := {x̂ : x ∈ X}.

Even if (X, d) is complete, (FUSCB(X), Hsend) need not be complete. In
fact, (FUSCB(X), Hsend) is complete if and only if X has only one element.
We have the following conclusions

Theorem 6.2. Let (X, d) be a metric space. Then the following statements
are equivalent.

(i) X is complete.

(ii) (PUSCB(X), Hsend) is complete.

Proof. (i) ⇒ (ii). Let {un} be a Cauchy sequence in (PUSCB(X), Hsend).
Note that for each u, v ∈ PUSCB(X), Hend(u, v) = Hend(←−u ,←−v ). So by (9),
{←−un} is a Cauchy sequence in (FUSCG(X), Hend). From Theorem 6.1, {←−un}
converges to u ∈ FUSCG(X).

By (10), {〈un〉0} is a Cauchy sequence in (K(X), H). Thus {〈un〉0} con-
verges to u0 ∈ K(X).

Set w ∈ PUSCB(X) given by

〈w〉α =

{
[u]α, α > 0,
u0, α = 0.

Thus from Theorem 5.13, un converges to w in (PUSCB(X), Hsend).
(ii) ⇒ (i). Note that d(x, y) = Hsend(x̂, ŷ). So the desired result follows

from the fact that (X, d) is isometric to a closed subspace of (PUSCB(X), Hsend).

Theorem 6.3. (PUSCB(X̃), Hsend) is a completion of (FUSCB(X), Hsend).
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Proof. From Theorem 6.2, (PUSCB(X̃), Hsend) is complete. To show that

(PUSCB(X̃), Hsend) is a completion of (FUSCB(X), Hsend), we only need to

show that for each u ∈ PUSCB(X̃) and each ε > 0, there is a w ∈ FUSCB(X)
such that Hsend(u,−→w ) ≤ ε. To show this is equivalent to show the following
affirmations (a) and (b)

(a) For each u ∈ PUSCB(X̃) and each ε > 0, there exists a v ∈ FUSCB(X̃)
such that Hsend(u,−→v ) ≤ ε

(b) For each v ∈ FUSCB(X̃) and each ε > 0, there exists a w ∈ FUSCB(X)
such that Hsend(v, w) ≤ ε

Let u ∈ PUSCB(X̃). Define uε ∈ FUSCB(X̃), ε > 0, given by

[uε]α =

{
〈u〉α, α ∈ (ε, 1],
〈u〉0, α ∈ [0, ε].

Then Hsend(u,−→uε) ≤ ε. So affirmation (a) is proved.

Let v ∈ FUSCB(X̃). We can choose a finite subset C0 of X such that
H(C0, [v]0) < ε. Define

Cα := {x ∈ C0 : d(x, [v]α) ≤ ε}, α ∈ (0, 1]. (12)

We affirm that {Cα : α ∈ [0, 1]} has the following properties
(i) Cα 6= ∅ for all α ∈ [0, 1].
(ii) H(Cα, [v]α) ≤ ε for all α ∈ [0, 1].
(iii) Cα =

⋂
β<αCβ for all α ∈ (0, 1].

(iv) C0 =
⋃
α>0Cα =

⋃
α>0Cα.

For each y ∈ [v]α, there exists zy ∈ C0 such that d(y, zy) = d(y, C0) < ε.
Hence zy ∈ Cα and thus Cα 6= ∅. So (i) is true.

To show (ii), we only need to show that H(Cα, [v]α) ≤ ε for 0 < α ≤ 1.
Let α ∈ (0, 1]. From (12), H∗(Cα, [v]α) ≤ ε. In the following, we show that
H∗([v]α, Cα) < ε. In fact, for each y ∈ [v]α, d(y, Cα) ≤ d(y, zy) = d(y, C0)
(hence d(y, Cα) = d(y, C0)). Thus H∗([v]α, Cα) ≤ H([v]0, C0) < ε. So (ii) is
proved.

Let α ∈ (0, 1]. Clearly Cα ⊆
⋂
β<αCβ. By Lemma 3.6, limβ→α−H([v]α, [v]β) =

0. So for each x ∈ X, d(x, [v]α) = limβ→α− d(x, [v]β), and hence Cα ⊇⋂
β<αCβ. Thus Cα =

⋂
β<αCβ. So (iii) is true.
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Let x ∈ C0. Then d(x, [v]0) < ε. Since [v]0 = ∪α>0[v]α, there exists α > 0
such that d(x, [v]α) < ε (in fact, for each x ∈ X, d(x, [v]0) = infα>0 d(x, [v]α)),
and thus x ∈ Cα. So (iv) is proved.

Set w ∈ F (X) given by [w]α = Cα for all α ∈ [0, 1]. Then by (i), (iii) and
(iv), w ∈ FUSCB(X). From (ii), we have Hsend(v, w) ≤ ε. So affirmation (b)
is proved.

Theorem 6.4. (FUSCG(X̃), Hend) is a completion of (FUSCB(X), Hend).

Proof. From Theorem 6.1, affirmation (b) in the proof of Theorem 6.3 and

(9), we only need to show that for each u ∈ FUSCG(X̃) and each ε > 0, there

is a v ∈ FUSCB(X̃) such that Hend(u, v) ≤ ε.

Let u ∈ FUSCG(X̃). Define uε ∈ FUSCB(X̃), ε > 0, given by

[uε]α =

{
[u]α, α ∈ (ε, 1],
[u]ε, α ∈ [0, ε].

Then Hend(u, uε) ≤ ε.

Corollary 6.5. (FUSCG(X̃), Hend) is a completion of (FUSCG(X), Hend).

Proof. Since FUSCB(X) ⊆ FUSCG(X) ⊆ FUSCG(X̃), the desired result fol-
lows from Theorem 6.4.

7. Conclusions

In this paper, we point out some elementary relationship among Γ-convergence,
Hend convergence and Hsend convergence, and give level characterizations of
Γ-convergence and Hend convergence on FUSC(X).

Based on above results, we discuss characterizations of compactness and
completions of two kinds of fuzzy set spaces (FUSCG(X), Hend) and (FUSCB(X), Hsend),
respectively.

In [10], we consider the properties and relationships of Γ-convergence,
Hend convergence and Hsend convergence when X = Rm. Some results in this
paper improve the corresponding results in [10].

The results in this paper have potential applications in fuzzy set research
involving these three convergence structures.
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