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ABSTRACT 

In the early days of the epidemic of coronavirus disease 2019 (COVID-19), due to insufficient 

knowledge of the pandemic, inadequate nucleic acid tests, lack of timely data reporting, etc., the 

origin time of the onset of COVID-19 is difficult to determine. Therefore, source tracing is crucial 

for infectious disease prevention and control. The purpose of this paper is to infer the origin time of 

pandemic of COVID-19 based on a data and model hybrid driven method. 

We model the testing positive rate to fit its actual trend, and use the least squares estimation to 

obtain the optimal model parameters. Further, the kernel density estimation is applied to infer the 

origin time of pandemic given the specific confidence probability. 

By selecting 12 representative regions in the United States for analysis, the dates of the first 

infected case with 50% confidence probability are mostly between August and October 2019, which 

are earlier than the officially announced date of the first confirmed case in the United States on 

January 20, 2020. The experimental results indicate that the COVID-19 pandemic in the United 

States starts to spread around September 2019 with a high confidence probability.  

In addition, the existing confirmed cases are also used in Wuhan City and Zhejiang Province in 

China to infer the origin time of COVID-19 and provide the confidence probability. The results 

show that the spread of COVID-19 pandemic in China is likely to begin in late December 2019. 
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INTRODUCTION 

In human history, it usually takes decades to explore the origin of infectious diseases and even 

until now people have not found all of the answers. Recently studying the origin, spread and 

evolution of coronavirus disease 2019 (COVID-19) in more than 200 countries and regions around 

the world has become a new research subject for global scientific community. Source tracking is 

crucial for infectious disease prevention and control. However, the process of scientific 

demonstration is complex for it requires a large amount of biological information and 

epidemiological evidence to converge into a mutually supportive evidence chain, which is time-

consuming and uncertain. A series of previous studies showed that the United States, Spain, France, 
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Italy, Brazil and other countries had been attacked by the coronavirus before its outbreak in China. 

The main task of disease tracing is to find the first case. Though the first known case in Wuhan, 

China is the first confirmed case reported, it does not mean  it is the first case people seek for. From 

the human history of fighting against infectious diseases, it is difficult to find a successful precedent 

for tracing the origin yet. 

The primary method for origin tracing of COVID-19 is molecular traceability [1]. First of all, a 

global coronavirus information database is needed to further integrate genomic, epidemiological 

and clinical data. Secondly, based on the integration and analysis of molecular data and 

epidemiological data, it is able to systematically study the correlation and law between this series 

of coronavirus and various exposed factors, which provide an important reference for traceability. 

Epidemic spread is a complex process involving many factors [2], some of which are difficult to 

figure out. However, the epidemic data imply the comprehensive influence of these factors. 

Theoretically, by analyzing these big data, the law of epidemic spread can also be obtained. 

Therefore, another method for origin tracing of COVID-19 is based on big data analysis. Combined 

with mathematical model and artificial intelligence technology, qualitative and quantitative analysis 

of infectious diseases can reveal the epidemic law of infectious diseases and detect the origin and 

development trend of infectious diseases. There are many studies on predicting forward using 

epidemic model and data at home and abroad [3-7], but there are few studies on tracing backward 

by establishing mathematical models and using big data analysis methods [8,9]. 

In the early days of COVID-19, most countries including the United States and China lacked 

basic knowledge of the epidemic situation and nucleic acid detection was not in place. There were 

other problems such as lack, lag or distortion in the data released, which made it even more difficult 

to determine the origin time of the epidemic onset. To this end, we collect daily epidemic data of 

the U.S. including the number of newly confirmed people, the number of new deaths, the number 

of Nucleic Acid Amplification Tests (NAATs) and the positive rate of tests. We analyze the 

characteristics of various data and finally choose the number of nucleic acid tests and the testing 

positive rate of each state in the U.S. as the modeling data. According to the classical infectious 

disease model and statistical methods, an optimization model is established. The model parameters 

are obtained by using least squares estimation. The origin time of epidemic situation in selected 

states of the U.S. is inferred, and the time with corresponding probability 0.5, 0.6, 0.7 and 0.8 of the 

first infection, 50 infections and 100 infections in these states are obtained by kernel density 

estimation. 

 

RESULTS 

Data description 

The main data used for modeling in this study are the daily testing positive rate, that is, the daily 

proportion of the number of positive nucleic acid tests accounts for the total number of nucleic acid 

tests of COVID-19. The data on the total number of tests and the number of positive tests of each 

state in the U.S. come from the official website of the United States Department of Health and 

Human Services [10]. By observing the early testing positive rate curves of more than 50 states in 

the U.S., it is found that 13 states and District of Columbia (mainly in the Northeast) where the 

excess mortality reached the peak earlier in 2020 [11] share the same pattern of change, that is, the 

testing positive rate rises to the peak rapidly after a short fluctuation. 

Table 1 shows the cumulative number of tests, the population and the percentage of total tests in 
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the population of the 13 states and District of Columbia in the U.S. at the peak of the testing positive 

rate. When the testing positive rate in New Jersey and Vermont reached the peak, the cumulative 

number of tests was less than 1,000 and the test ratio was too small, so these two states are not 

considered in the following analysis. 

 

Table 1. Cumulative Number of Tests, Population and Test Ratio of the 13 States and District 

of Columbia in the U.S. 

 

 

Take Maryland as an example (Figure 1). The black dots represent the calculated daily testing 

positive rate, and the red line represents the values after 15-day smoothing (7 days each before and 

after that very day). The purpose of smoothing is to reduce the impact of data fluctuations. The 

following testing positive rate refers to the smoothed testing positive rate unless specified otherwise. 

The positive rate in Maryland began to increase from 8% on March 18, and reached a peak of nearly 

30% on April 15, after which the positive rate started to decline. 

 

 

Figure 1. Testing Positive Rate of Maryland 

 

Region Cumulative Number of Tests Population Test Ratio

New Jersey 158 8882190 0.000018

Vermont 715 623989 0.001146

Virginia 18194 8535519 0.002132

Michigan 50905 9986857 0.005097

New Hampshire 12001 1359711 0.008826

Louisiana 45567 4648794 0.009802

Connecticut 44479 3565287 0.012476

New York 247165 19453561 0.012705

Pennsylvania 168746 12801989 0.013181

Maryland 86939 6045680 0.01438

District of Columbia 12256 705749 0.017366

Massachusetts 126162 6892503 0.018304

Delaware 22636 973764 0.023246

Rhode Island 44018 1059361 0.041551
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The positive rates of the remaining 10 states and District of Columbia have the same 

characteristics as that of Maryland, as shown in Figure 2. All states began to open commercial 

nucleic acid tests around March 15 and before that, due to the limit of detection level and inadequate 

number of tests, the positive rate may fluctuate to some extent and cannot represent the actual 

situation. Therefore, only the steadily increasing sequence from the first valley to the first peak is 

selected for modeling. 
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Figure 2. Testing Positive Rates of 10 states and District of Columbia 

 

The above-mentioned 11 states and District of Columbia share the same characteristic that the 

testing positive rate rises to a peak not long after the beginning, due to the approximately natural 

propagation in the early stage of the epidemic in the U.S. If for each state, the infectious disease 

model we build can fit the first rising part of the positive rate well, it indicates that the model can 

accurately reflect the spread of the epidemic within time, then we can trace the origin of the epidemic 

by looking backwards in history. 

 

Date tracing process 

The process of tracing the origin time of the pandemic is mainly divided into three steps. 

Step 1. Perform a 15-day smoothing process on the daily positive rate of the target district to 

reduce the impact of random noise. If there are abnormal fluctuations in the previous period, drop 

this part of the data, and only choose the sequence corresponding to the first stably rising period. 

The time interval is denoted as T, whose length is denoted as 𝜏, and the endpoints on both sides 

correspond to the trough time and the crest time respectively. 

Step 2. Take the 14 consecutive days of interval T as the fitting data 𝑦𝑖,𝑖=1,…,14, use the two-

parameter exponential epidemic model of the testing positive rate to get the fitting function 𝑦, and 

record the fitting accuracy index MAPE (Mean Absolute Percentage Error) 

1

14
∑

|𝑦𝑖−𝑦𝑖|

𝑦𝑖

14

𝑖=1

. 

Denote the number of the people engaged in NAATs in the target district as M. Extend the 

positive rate fitting function 𝑦 towards history, and solve for the time 𝑡1 when 𝑦(𝑡)M=1, that 

is, the occurring time of first case of the target district. Similarly, solve for the time 𝑡50 when 

𝑦(𝑡)M=50 and the time 𝑡100 when 𝑦(𝑡)M=100, which represent the occurring time of 50 
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cases and 100 cases in the target district respectively. Since 𝑦(𝑡)→0,𝑡→−∞, the above equation 

must have a solution. 

Step 3. Take 14 days as the size of the fitting window and 1 as the step size, and perform sliding 

sampling on the interval T. Repeat step 2 for each window to obtain τ-13 retrospective dates and 

MAPE values. Apply the kernel density estimation to obtain the probability distribution of the origin 

time, and calculate the average MAPE as the evaluation index of the overall fitting accuracy. 

 

Origin time of 11 states and District of Columbia in the U.S. 

Take Maryland as an example to trace the origin of the epidemic. The rising period of the testing 

positive rate in Maryland is from March 18, 2020 to April 15, 2020. The observation data, 

transmission model data, and retrospective data are shown in Figure 3. The time interval between 

the blue dotted lines corresponds to March 18, 2020 to April 15, 2020, and the time interval between 

the gray dotted lines is one of the sliding data windows used for fitting. 

 

 

Figure 3. Modeling the testing positive rate in Maryland and tracing the Origin date 

 

Through the sliding of the fitting window, several inferred dates of the first case in Maryland are 

obtained and the corresponding probability density is shown in the Figure 4A. In the same way, 

dates of 50, 100 cases are inferred and their corresponding probability densities are shown in the 

Figure 4B and 4C. The two red lines in figures represent the mean line (left) and the density peak 

line (right). 
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(a) first case 

 

(b) 50 cases 

 

(c) 100 cases 

Figure 4. Tracing dates of the first case, 50 cases, 100 cases and corresponding probability 

density for Maryland 
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Table 2 shows the results of inferring origins of the COVID-19 pandemic for 11 states and District 

of Columbia in the U.S., including dates of the first infection, 50 infections, and 100 infections given 

the probability of 50%, 60%, 70%, and 80%, respectively. Taking Maryland as an example, the 

probabilities that the first infection occurred before 2019-09-22, 2019-10-06, 2019-10-19, and 2019-

11-02 are 50%, 60%, 70%, and 80%, respectively. 

 

Table 2. Dates and corresponding probabilities of the first, 50, and 100 outbreaks in 12 

regions of the United States 

 

 

The average MAPE for modelling each state’s testing positive rate is less than 5%, indicating that 

the models are of high accuracy. In addition, the rising period of the positive rate is short in several 

states, thus the length of the fitting window is appropriately reduced to obtain more results of 

inferring origins, ensuring the accuracy of the kernel density estimation. 

The above uses the cumulative number of positive tests to conduct into the origins of COVID-19. 

Since the actual number of positive people is much larger than the number of positive tests due to 

the limitation of testing, the former inferences are relatively conservative inference, that is, the 

inferred dates of origins are relatively late. The authoritative study has shown that the actual infected 

cases of COVID-19 in the United States are between 3 and 20 times the number of confirmed cases 

[12], which means that the early detection of the epidemic in the United States is obviously 

insufficient, resulting in that the number of infected cases is seriously underestimated. To this end, 

we have expanded the cumulative number of people involved in the nucleic acid test up to the peak 

of the positive rate to 3, 5, 10, 15, and 20 times, respectively, and then we can infer the earlier date 

of the onset of the epidemic. The testing rate in Maryland at the peak of the positive  is at a medium 

level among the selected regions. As a typical representative example, we will expand Maryland’s 

cumulative number of tests before the peak of positive rate rises to 3, 5, 10, 15, and 20 times, 

respectively, the corresponding dates of origin and probabilities are shown in Table 3. 

 

Table 3. The date of origin of the epidemic and its corresponding probabilities for the 

cumulative number of people detected in Maryland expanded by different multiples 

 

 

Origin time of Wuhan City and Zhejiang Province in China 

The number of ‘existing confirmed cases’ is defined as the ‘cumulative number of confirmed 

cases’ minus the ‘sum of cumulative number of recovered cases and cumulative number of deaths’. 

50% 60% 70% 80% 50% 60% 70% 80% 50% 60% 70% 80%
Rhode Island 2019/4/26 2019/5/7 2019/5/18 2019/5/29 2019/9/28 2019/10/5 2019/10/10 2019/10/17 2019/10/26 2019/10/31 2019/11/6 2019/11/11 0.0116
Connecticut 2019/5/12 2019/5/25 2019/6/6 2019/6/20 2019/9/20 2019/9/27 2019/10/5 2019/10/13 2019/10/13 2019/10/20 2019/10/27 2019/11/2 0.013

Michigan 2019/8/14 2019/8/27 2019/9/8 2019/9/21 2019/11/14 2019/11/21 2019/11/28 2019/12/6 2019/11/30 2019/12/6 2019/12/13 2019/12/20 0.0159
District of Columbia 2019/8/29 2019/9/21 2019/10/9 2019/10/27 2019/12/14 2019/12/25 2020/1/3 2020/1/12 2020/1/1 2020/1/11 2020/1/18 2020/1/25 0.0228

Maryland 2019/9/22 2019/10/6 2019/10/19 2019/11/2 2019/12/9 2019/12/17 2019/12/25 2020/1/2 2019/12/23 2019/12/30 2020/1/6 2020/1/13 0.0211
Pennsylvania 2019/9/22 2019/9/26 2019/9/29 2019/10/2 2019/12/3 2019/12/6 2019/12/7 2019/12/9 2019/12/16 2019/12/18 2019/12/20 2019/12/22 0.0209

Massachusetts 2019/10/5 2019/10/18 2019/10/30 2019/11/12 2019/12/13 2019/12/21 2019/12/28 2020/1/5 2019/12/24 2019/12/31 2020/1/7 2020/1/14 0.0422
New York 2019/10/12 2019/10/16 2019/10/20 2019/10/23 2019/12/7 2019/12/10 2019/12/12 2019/12/15 2019/12/17 2019/12/19 2019/12/21 2019/12/23 0.0378

New Hampshire 2019/10/22 2019/10/29 2019/11/4 2019/11/11 2020/1/20 2020/1/23 2020/1/26 2020/1/29 2020/2/4 2020/2/7 2020/2/9 2020/2/11 0.0277
Virginia 2019/10/23 2019/11/3 2019/11/15 2019/11/27 2020/1/9 2020/1/14 2020/1/20 2020/1/26 2020/1/23 2020/1/27 2020/2/1 2020/2/5 0.0168

Louisiana 2019/11/4 2019/11/15 2019/11/26 2019/12/7 2020/1/1 2020/1/7 2020/1/13 2020/1/20 2020/1/11 2020/1/16 2020/1/22 2020/1/28 0.0777
Delaware 2019/11/30 2019/12/9 2019/12/18 2019/12/27 2020/1/29 2020/2/2 2020/2/7 2020/2/12 2020/2/8 2020/2/12 2020/2/16 2020/2/20 0.0306

Region
First Case 50 Cases 100 Cases

Average MAPE

50% 60% 70% 80% 50% 60% 70% 80% 50% 60% 70% 80%
3 2019/9/1 2019/9/16 2019/9/30 2019/10/16 2019/11/17 2019/11/27 2019/12/6 2019/12/16 2019/12/1 2019/12/10 2019/12/18 2019/12/27
5 2019/8/21 2019/9/7 2019/9/22 2019/10/8 2019/11/7 2019/11/18 2019/11/27 2019/12/8 2019/11/21 2019/11/30 2019/12/10 2019/12/19
10 2019/8/8 2019/8/25 2019/9/10 2019/9/27 2019/10/24 2019/11/5 2019/11/16 2019/11/27 2019/11/7 2019/11/18 2019/11/27 2019/12/8
15 2019/7/31 2019/8/17 2019/9/3 2019/9/20 2019/10/16 2019/10/29 2019/11/9 2019/11/20 2019/10/30 2019/11/10 2019/11/21 2019/12/2
20 2019/7/25 2019/8/13 2019/8/29 2019/9/17 2019/10/10 2019/10/23 2019/11/4 2019/11/16 2019/10/24 2019/11/5 2019/11/16 2019/11/27

Multiple
First Case 50 Cases 100 Cases
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As China adopts a mass testing strategy of epidemic prevention and control [13], the testing positive 

rate maintains a very low level in most time, which is not suitable for modeling. However, because 

of this strategy, the number of existing confirmed cases in China is closer to the actual number of 

infections. Therefore, we directly use the number of existing confirmed cases to replace the testing 

positive rate, and select Wuhan City and Zhejiang Province, China, as the two representative regions 

to trace the origin of the COVID-19. 

The changes in the existing confirmed cases in Wuhan City and Zhejiang Province [14,15] are 

shown in Figure 5. As for Wuhan (Figure 5A), we find that the number of existing confirmed cases 

increased sharply on February 12, 2020. This is mainly caused by the revision of the definition of 

confirmed cases. Specifically, the number of clinically diagnosed cases is also included into the 

number of confirmed cases. The number of existing confirmed cases peaks on February 18, 2020. 

With respect to Zhejiang (Figure 5B), the number of existing confirmed cases peaks on February 7, 

2020. 

 

 

 
Figure 5. Modeling the number of existing confirmed cases and tracing the Origin time in 

Wuhan and Zhejiang, China 
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In order to improve the reliability of results, we change the time interval and the size of sliding 

window to conduct multiple numerical experiments, and select the model with the smallest MAPE 

as the final model. For Wuhan, we take January 27, 2020 to February 11, 2020, and January 27, 

2020 to February 18, 2020 as the fitting time intervals. Meanwhile, we change the window size. 

With regard to Zhejiang, we take January 22, 2020 to February 7, 2020, January 23, 2020 to 

February 7, 2020, January 24, 2020 to February 7, 2020, and January 25, 2020 to February 7, 2020 

as the fitting time interval, respectively. The model results of two regions are listed in Table 5. The 

model selected for furtherly inferring the Origin time is marked with the star in the MAPE column 

(Table 5). 

Through the sliding of the fitting window, multiple inferred dates of the first case, 50 cases, 100 

cases in Wuhan are obtained and the corresponding probability density is shown in Figure 6. 

 

 

(a) first case 
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(b) 50 cases 

 

(c) 100 cases 

Figure 6. Tracing dates of the first case, 50 cases, 100 cases and corresponding probability 

density for Wuhan 

 

Table 5 shows that the probabilities that the first infection occurred in Wuhan, China before 

December 20, 2019, December 22, 2019, December 24, 2019, and December 26, 2019 are 50%, 

60%, 70%, and 80%, respectively. The probabilities that the first infection occurred in Zhejiang, 

China before December 23, 2019, December 31, 2019, January 6, 2020, and January 14, 2020 are 

50%, 60%, 70%, and 80%, respectively. 

 

Table 5. Dates and corresponding probabilities of the first case, 50 cases and 100 cases in 

Wuhan and Zhejiang, China 

 
 

Conclusion 

Based on the infectious disease transmission model and big data analysis method, this paper 

establishes an optimization model. Using the daily data released by the 12 representative regions of 

the United States, the model parameters are obtained separately, and then dates of first case, 50 cases 

and 100 cases of COVID-19 infection are inferred with corresponding probabilities. For the 12 

representative regions, the dates of the first infection with probability 50% are mostly between 

August and October 2019, the earliest is April 26, 2019 for Rhode Island, and the latest is November 

2019 for Delaware, which are all earlier than January 20, 2020, the officially announced date of the 

first confirmed case in the United States. The calculation results show that the COVID-19 epidemic 

in the United States has a high probability of beginning to spread around September 2019. 

According to this model, we use the daily existing number of confirmed diagnoses in Wuhan City, 

China and Zhejiang Province, China to obtain the model parameters and infer the infection time of 

50% 60% 70% 80% 50% 60% 70% 80% 50% 60% 70% 80%
Wuhan 2019/12/12 2019/12/14 2019/12/16 2019/12/18 2020/1/5 2020/1/6 2020/1/7 2020/1/9 2020/1/9 2020/1/10 2020/1/11 2020/1/12 0.0964 2020/1/27 2020/2/18 14
Wuhan 2019/12/11 2019/12/15 2019/12/19 2019/12/23 2020/1/4 2020/1/7 2020/1/9 2020/1/11 2020/1/8 2020/1/11 2020/1/12 2020/1/14 0.0690 2020/1/27 2020/2/18 7
Wuhan 2019/12/20 2019/12/22 2019/12/24 2019/12/26 2020/1/9 2020/1/10 2020/1/11 2020/1/13 2020/1/13 2020/1/14 2020/1/15 2020/1/16 0.04* 2020/1/27 2020/2/11 7

Zhejiang 2019/12/26 2020/1/2 2020/1/9 2020/1/16 2020/1/17 2020/1/20 2020/1/22 2020/1/24 2020/1/20 2020/1/22 2020/1/23 2020/1/25 0.1040 2020/1/22 2020/2/7 7
Zhejiang 2019/12/23 2019/12/31 2020/1/6 2020/1/14 2020/1/16 2020/1/19 2020/1/21 2020/1/24 2020/1/20 2020/1/22 2020/1/23 2020/1/25 0.0874* 2020/1/23 2020/2/7 7
Zhejiang 2019/12/18 2019/12/26 2020/1/3 2020/1/11 2020/1/14 2020/1/18 2020/1/21 2020/1/23 2020/1/19 2020/1/21 2020/1/23 2020/1/25 0.0900 2020/1/24 2020/2/7 7
Zhejiang 2019/12/13 2019/12/21 2019/12/30 2020/1/7 2020/1/12 2020/1/16 2020/1/19 2020/1/22 2020/1/18 2020/1/20 2020/1/22 2020/1/25 0.0881 2020/1/25 2020/2/7 7

End Window SizeRegion
First Case 50 Cases 100 Cases

Average MAPE Start
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first case, 50 cases and 100 cases with corresponding probabilities. For Wuhan, the date of the first 

case of COVID-19 with probability 50% is inferred as December 20, 2019, and the date of the first 

case in Zhejiang is inferred as December 23, 2019. The calculation results show that the COVID-

19 epidemic in China has a high probability of beginning to spread in late December 2019. 

If the detection data in the early stage of epidemic of other countries or regions are relatively 

accurate, this method can be used to infer the Origin time of the epidemic and provide the date of 

the first case or certain cases under a given probability. 

 

METHODS 

Epidemic model 

  The classic infectious disease dynamic model assumes that the number of infected persons will 

increase exponentially in the early stage of epidemic under the condition of non-intervention and 

approximately natural transmission, and thus intuitively presents a J curve. This assumption is 

consistent with the early epidemic situation of the U.S. Literature [16] proposed the following 

infectious disease transmission model 

𝑁(𝑡)=𝑁(𝑡0)exp{𝑎𝑡(𝑡−𝑡0)},                         (1) 

where 𝑁(𝑡) is the number of existing infections at time 𝑡, 𝑁(𝑡0) and 𝑡0 are constants, and 𝑎𝑡 

varies with time 𝑡. Due to the short initial spread of the epidemic, the virus has not mutated yet, we 

can assume that 𝑎𝑡 does not change over time and is denoted as 𝑎. After simplifying the model 

(1), a two-parameter exponential model of the number of existing infections is obtained 

𝑁(𝑡)=𝑒𝑏+𝑎𝑡.                                (2) 

  Denote 𝑆 as the set of cumulative test population up to the first peak of testing positive rate in 

the target district. Then the population participating in the test every day can be regarded as a random 

sampling of the set 𝑆, and the test positive rate represents the infection rate of the set 𝑆. The positive 

rate is multiplied by M (the number of elements in 𝑆) to get the number of existing infections in 

the test population, which is much lower than the number of existing infections in the target district 

during the same period. The curve of the testing positive rate synchronizes with the curve of the 

existing number of infected persons, and the only difference between them is a constant multiple, 

so the model (2) is also applicable to the testing positive rate. Denote the testing positive rate in the 

target district as 𝑦. From the above two-parameter exponential model (2), the following model can 

be obtained 

𝑦(𝑡)=e𝑐0+𝑐1𝑡,                                (3) 

where 𝑐0,𝑐1 are model parameters to be determined, which can be estimated from the 

observational data of testing positive rate. 

 

Least squares optimization 

  Assuming that a total of 𝑛 days of observational data (𝑡𝑖,𝑦𝑖),𝑖=1,…,𝑛 are collected, in order 

to estimate the parameters 𝑐0 and 𝑐1, the following least squares optimization model is established 

min
c0,𝑐1

∑ (𝑦𝑖−𝑒𝑐0+𝑐1𝑡𝑖)2𝑛
𝑖=1 .                           (4) 

  To simplify the calculation, first take the natural logarithm of both sides of the model (3) to obtain 

log𝑦=𝑐0+𝑐1𝑡, and then for the transformed data (𝑡𝑖,log𝑦𝑖),𝑖=1,…,𝑛, we reformulate the 

least squares optimization model 

min
c0,𝑐1

∑ (log𝑦𝑖−𝑐0−𝑐1𝑡𝑖)
2𝑛

𝑖=1 .                         (5) 
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Solve model (5) to get the optimal solution (𝑐0,𝑐1), thus obtaining the epidemic spread model 

𝑦(𝑡)=e𝑐0+𝑐1𝑡. 

 

Kernel density estimation 

  Kernel density estimation, as a non-parametric estimation method, can be applied to estimate the 

unknown probability distribution without prior knowledge. The principle is that if a certain number 

appears in observation, it can be considered that the probability density of this number is relatively 

large, the probability density of the number close to it will also be relatively large, and the 

probability density of the number far away from it will be relatively small. Therefore, a function 

that satisfies the above conditions can be used to approximate the probability density for each 

observed number, and then sum all the functions to obtain the probability density function after 

normalization. 

  Assuming that several possible Origin times of the target district are calculated as 𝑥𝑖,𝑖=1,…,𝑚 

according to different data fitting intervals, the probability density of the Origin date at 𝑥 is 

𝑓ℎ(𝑥)=
1

𝑚ℎ
∑ 𝐾(𝑥−

𝑥𝑖

ℎ
)

𝑚

𝑖=1

, 

where the kernel function 𝐾 satisfies ∫𝐾(𝑥)d𝑥=1, and the smoothing parameter ℎ is called 

bandwidth. The kernel function is generally a symmetric and unimodal probability density function. 

Here, the commonly used Gaussian kernel is selected as 

𝐾(𝑥)=
1

√2𝜋
exp(−

𝑥2

2
), 

and the choice of bandwidth follows Silverman’s rule of thumb [17]. 
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