按提交时间
按主题分类
按作者
按机构
  • Faster Zero-shot Multi-modal Entity Linking via Visual#2;Linguistic Representation

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Multi-modal entity linking plays a crucial role in a wide range of knowledge-based modal-fusion tasks, i.e., multi-modal retrieval and multi-modal event extraction. We introduce the new ZEro-shot Multi-modal Entity Linking (ZEMEL) task, the format is similar to multi-modal entity linking, but multi-modal mentions are linked to unseen entities in the knowledge graph, and the purpose of zero-shot setting is to realize robust linking in highly specialized domains. Simultaneously, the inference efficiency of existing models is low when there are many candidate entities. On this account, we propose a novel model that leverages visual#2; linguistic representation through the co-attentional mechanism to deal with the ZEMEL task, considering the trade-off between performance and efficiency of the model. We also build a dataset named ZEMELD for the new task, which contains multi-modal data resources collected from Wikipedia, and we annotate the entities as ground truth. Extensive experimental results on the dataset show that our proposed model is effective as it significantly improves the precision from 68.93% to 82.62% comparing with baselines in the ZEMEL task.

  • Uncovering Topics of Public Cultural Activities: Evidence from China

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:In this study, we uncover the topics of Chinese public cultural activities in 2020 with a two-step short text clustering (self-taught neural networks and graph-based clustering) and topic modeling approach. The dataset we use for this research is collected from 108 websites of libraries and cultural centers, containing over 17,000 articles. With the novel framework we propose, we derive 3 clusters and 8 topics from 21 provincial#2; level regions in China. By plotting the topic distribution of each cluster, we are able to shows unique tendencies of local cultural institutes, that is, free lessons and lectures on art and culture, entertainment and service for socially vulnerable groups, and the preservation of intangible cultural heritage respectively. The findings of our study provide decision-making support for cultural institutes, thus promoting public cultural service from a data-driven perspective.

  • Fuzzy-Constrained Graph Patter n Matching in Medical Knowledge Graphs

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:The research on graph pattern matching (GPM) has attracted a lot of attention. However, most of the research has focused on complex networks, and there are few researches on GPM in the medical field. Hence, with GPM this paper is to make a breast cancer-oriented diagnosis before the surgery. Technically, this paper has firstly made a new definition of GPM, aiming to explore the GPM in the medical field, especially in Medical Knowledge Graphs (MKGs). Then, in the specific matching process, this paper introduces fuzzy calculation, and proposes a multi-threaded bidirectional routing exploration (M-TBRE) algorithm based on depth first search and a two-way routing matching algorithm based on multi-threading. In addition, fuzzy constraints are introduced in the M-TBRE algorithm, which leads to the Fuzzy-M-TBRE algorithm. The experimental results on the two datasets show that compared with existing algorithms, our proposed algorithm is more efficient and effective.

  • Bi-GRU Relation Extraction Model Based on Keywords Attention

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Relational extraction plays an important role in the field of natural language processing to predict semantic relationships between entities in a sentence. Currently, most models have typically utilized the natural language processing tools to capture high-level features with an attention mechanism to mitigate the adverse effects of noise in sentences for the prediction results. However, in the task of relational classification, these attention mechanisms do not take full advantage of the semantic information of some keywords which have information on relational expressions in the sentences. Therefore, we propose a novel relation extraction model based on the attention mechanism with keywords, named Relation Extraction Based on Keywords Attention (REKA). In particular, the proposed model makes use of bi-directional GRU (Bi-GRU) to reduce computation, obtain the representation of sentences , and extracts prior knowledge of entity pair without any NLP tools. Besides the calculation of the entity-pair similarity, Keywords attention in the REKA model also utilizes a linear-chain conditional random field (CRF) combining entity-pair features, similarity features between entity-pair features, and its hidden vectors, to obtain the attention weight resulting from the marginal distribution of each word. Experiments demonstrate that the proposed approach can utilize keywords incorporating relational expression semantics in sentences without the assistance of any high-level features and achieve better performance than traditional methods.

  • Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression Problems

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Artificial intelligence and machine learning applications are of significant importance almost in every field of human life to solve problems or support human experts. However, the determination of the machine learning model to achieve a superior result for a particular problem within the wide real-life application areas is still a challenging task for researchers. The success of a model could be affected by several factors such as dataset characteristics, training strategy and model responses. Therefore, a comprehensive analysis is required to determine model ability and the efficiency of the considered strategies. This study implemented ten benchmark machine learning models on seventeen varied datasets. Experiments are performed using four different training strategies 60:40, 70:30, and 80:20 hold-out and five-fold cross-validation techniques. We used three evaluation metrics to evaluate the experimental results: mean squared error, mean absolute error, and coefficient of determination (R2 score). The considered models are analyzed, and each model's advantages, disadvantages, and data dependencies are indicated. As a result of performed excess number of experiments, the deep Long-Short Term Memory (LSTM) neural network outperformed other considered models, namely, decision tree, linear regression, support vector regression with a linear and radial basis function kernels, random forest, gradient boosting, extreme gradient boosting, shallow neural network, and deep neural network. It has also been shown that cross-validation has a tremendous impact on the results of the experiments and should be considered for the model evaluation in regression studies where data mining or selection is not performed.

  • COKG-QA: Multi-hop Question Answering over COVID-19 Knowledge Graphs

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:COVID-19 evolves rapidly and an enormous number of people worldwide desire instant access to COVID- 19 information such as the overview, clinic knowledge, vaccine, prevention measures, and COVID-19 mutation. Question answering (QA) has become the mainstream interaction way for users to consume the ever-growing information by posing natural language questions. Therefore, it is urgent and necessary to develop a QA system to offer consulting services all the time to relieve the stress of health services. In particular, people increasingly pay more attention to complex multi-hop questions rather than simple ones during the lasting pandemic, but the existing COVID-19 QA systems fail to meet their complex information needs. In this paper, we introduce a novel multi-hop QA system called COKG-QA, which reasons over multiple relations over large-scale COVID-19 Knowledge Graphs to return answers given a question. In the field of question answering over knowledge graph, current methods usually represent entities and schemas based on some knowledge embedding models and represent questions using pre-trained models. While it is convenient to represent different knowledge (i.e., entities and questions) based on specified embeddings, an issue raises that these separate representations come from heterogeneous vector spaces. We align question embeddings with knowledge embeddings in a common semantic space by a simple but effective embedding projection mechanism. Furthermore, we propose combining entity embeddings with their corresponding  schema embeddings which served as important prior knowledge, to help search for the correct answer entity of specified types. In addition, we derive a large multi-hop Chinese COVID-19 dataset (called COKG-DATA for remembering) for COKG-QA based on the linked knowledge graph OpenKG-COVID19 launched by OpenKG, including comprehensive and representative information about COVID-19. COKG-QA achieves quite competitive performance in the 1-hop and 2-hop data while obtaining the best result with significant improvements in the 3-hop. And it is more efficient to be used in the QA system for users. Moreover, the user study shows that the system not only provides accurate and interpretable answers but also is easy to use and comes with smart tips and suggestions.

  • Ensemble Making Few-Shot Learning Stronger

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Many few-shot models have been widely used for relation learning tasks. However, each of these models has a shortage of capturing a certain aspect of semantic features, for example, CNN on long-range dependencies part, Transformer on local features. It is difficult for a single model to adapt to various relation learning, which results in a high variance problem. Ensemble strategy could be competitive in improving the accuracy of few-shot relation extraction and mitigating high variance risks. This paper explores an ensemble approach to reduce the variance and introduces fine-tuning and feature attention strategies to calibrate relation-level features. Results on several few-shot relation learning tasks show that our model significantly outperforms the previous state-of-the-art models.

  • Knowledge Representation and Reasoning for Complex Time Expression in Clinical Text

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Temporal information is pervasive and crucial in medical records and other clinical text, as it formulates the development process of medical conditions and is vital for clinical decision making. However, providing a holistic knowledge representation and reasoning framework for various time expressions in the clinical text is challenging. In order to capture complex temporal semantics in clinical text, we propose a novel Clinical Time Ontology (CTO) as an extension from OWL framework. More specifically, we identified eight time#2; related problems in clinical text and created 11 core temporal classes to conceptualize the fuzzy time, cyclic time, irregular time, negations and other complex aspects of clinical time. Then, we extended Allen’s and TEO’s temporal relations and defined the relation concept description between complex and simple time. Simultaneously, we provided a formulaic and graphical presentation of complex time and complex time relationships. We carried out empirical study on the expressiveness and usability of CTO using real-world healthcare datasets. Finally, experiment results demonstrate that CTO could faithfully represent and reason over 93% of the temporal expressions, and it can cover a wider range of time-related classes in clinical domain.

  • Analysis of Pioneering Computable Biomedical Knowledge Repositories and their Emerging Governance Structures

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:A growing interest in producing and sharing computable biomedical knowledge artifacts (CBKs) is increasing the demand for repositories that validate, catalog, and provide shared access to CBKs. However, there is a lack of evidence on how best to manage and sustain CBK repositories. In this paper, we present the results of interviews with several pioneering CBK repository owners. These interviews were informed by the Trusted Repositories Audit and Certification (TRAC) framework. Insights gained from these interviews suggest that the organizations operating CBK repositories are somewhat new, that their initial approaches to repository governance are informal, and that achieving economic sustainability for their CBK repositories is a major challenge. To enable a learning health system to make better use of its data intelligence, future approaches to CBK repository management will require enhanced governance and closer adherence to best practice frameworks to meet the needs of myriad biomedical science and health communities. More effort is needed to find sustainable funding models for accessible CBK artifact collections.

  • A Workflow Demonstrator for Processing Catalysis Research Data

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:The UK Catalysis Hub (UKCH) is designing a virtual research environment to support data processing and analysis, the Catalysis Research Workbench (CRW). The development of this platform requires identifying the processing and analysis needs of the UKCH members and mapping them to potential solutions. This paper presents a proposal for a demonstrator to analyse the use of scientific workflows for large scale data processing. The demonstrator provides a concrete target to promote further discussion of the processing and analysis needs of the UKCH community. In this paper, we will discuss the main requirements for data processing elicited and the proposed adaptations that will be incorporated in the design of the CRW and how to integrate the proposed solutions with existing practices of the UKCH. The demonstrator has been used in discussion with researchers and in presentations to the UKCH community, generating increased interest and motivating further development.

  • A Semantic Approach to Workflow Management and Reuse for Research Problem Solving

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:The investigation proposes the application of an ontological semantic approach to describing workflow control patterns, research workflow step patterns, and the meaning of the workflows in terms of domain knowledge. The approach can provide wide opportunities for semantic refinement, reuse, and composition of workflows. Automatic reasoning allows verifying those compositions and implementations and provides machine-actionable workflow manipulation and problem-solving using workflows. The described approach can take into account the implementation of workflows in different workflow management systems, the organization of workflows collections in data infrastructures and the search for them, the semantic approach to the selection of workflows and resources in the research domain, the creation of research step patterns and their implementation reusing fragments of existing workflows, the possibility of automation of problem#2; solving based on the reuse of workflows. The application of the approach to CWFR conceptions is proposed.

  • Realising Data-Centric Scientific Workflows with Provenance-Capturing on Data Lakes

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Since their introduction by James Dixon in 2010, data lakes get more and more attention, driven by the promise of high reusability of the stored data due to the schema-on-read semantics. Building on this idea, several additional requirements were discussed in literature to improve the general usability of the concept, like a central metadata catalog including all provenance information, an overarching data governance, or the integration with (high-performance) processing capabilities. Although the necessity for a logical and a physical organisation of data lakes in order to meet those requirements is widely recognized, no concrete guidelines are yet provided. The most common architecture implementing this conceptual organisation is the zone architecture, where data is assigned to a certain zone depending on the degree of processing. This paper discusses how FAIR Digital Objects can be used in a novel approach to organize a data lake based on data types instead of zones, how they can be used to abstract the physical implementation, and how they empower generic and portable processing capabilities based on a provenance-based approach.

  • Scaling Notebooks as Re-configurable Cloud Workflows

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:Literate computing environments, such as the Jupyter (i.e., Jupyter Notebooks, JupyterLab, and JupyterHub), have been widely used in scientific studies; they allow users to interactively develop scientific code, test algorithms, and describe the scientific narratives of the experiments in an integrated document. To scale up scientific analyses, many implemented Jupyter environment architectures encapsulate the whole Jupyter notebooks as reproducible units and autoscale them on dedicated remote infrastructures (e.g., high#2; performance computing and cloud computing environments). The existing solutions are still limited in many ways, e.g., 1) the workflow (or pipeline) is implicit in a notebook, and some steps can be generically used by different code and executed in parallel, but because of the tight cell structure, all steps in the Jupyter notebook have to be executed sequentially and lack of the flexibility of reusing the core code fragments, and 2) there are performance bottlenecks that need to improve the parallelism and scalability when handling extensive input data and complex computation. In this work, we focus on how to manage the workflow in a notebook seamlessly. We 1) encapsulate the reusable cells as RESTful services and containerize them as portal components, 2) provide a composition tool for describing workflow logic of those reusable components, and 3) automate the execution on remote cloud infrastructure. Empirically, we validate the solution’s usability via a use case from the Ecology and  Earth Science domain, illustrating the processing of massive Light Detection and Ranging (LiDAR) data. The demonstration and analysis show that our method is feasible, but that it needs further improvement, especially on integrating distributed workflow scheduling, automatic deployment, and execution to develop as a mature approach.

  • Using a Workflow Management Platform in Textual Data Management

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:The paper gives a brief introduction about the workflow management platform, Flowable, and how it is used for textual-data management. It is relatively new with its first release on 13 October, 2016. Despite the short time on the market, it seems to be quickly well-noticed with 4.6 thousand stars on GitHub at the moment. The focus of our project is to build a platform for text analysis on a large scale by including many different text resources. Currently, we have successfully connected to four different text resources and obtained more than one million works. Some resources are dynamic, which means that they might add more data or modify their current data. Therefore, it is necessary to keep data, both the metadata and the raw data, from our side up to date with the resources. In addition, to comply with FAIR principles, each work is assigned a persistent identifier (PID) and indexed for searching purposes. In the last step, we perform some standard analyses on the data to enhance our search engine and to generate a knowledge graph. End-users can utilize our platform to search on our data or get access to the knowledge graph. Furthermore, they can submit their code for their analyses to the system. The code will be executed on a High-Performance Cluster (HPC) and users can receive the results later on. In this case, Flowable can take advantage of PIDs for digital objects identification and management to facilitate the communication with the HPC system. As one may already notice, the whole process can be expressed as a workflow. A workflow, including error handling and notification, has been created and deployed. Workflow execution can be triggered manually or after predefined time intervals. According to our evaluation, the Flowable platform proves to be powerful and flexible. Further usage of the platform is already planned or implemented for many of our projects.

  • From a Dynamic Image Annotation Process within the Humanities to a Canonical Workflow

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:One idea of the Canonical Workflow Framework for Research (CWFR) is to improve the reusability and automation in research. In this paper, we aim to deliver a concrete view on the application of CWFRs to a use case of the arts and humanities to enrich further discussions on the practical realization of canonical workflows and the benefits that come with it. This use case involves context dependent data transformation and feature extraction, ingests into multiple repositories as well as a “human-in-the-loop” workflow step, which introduces a certain complexity into the mapping to a canonical workflow.

  • Evaluation of Application Possibilities for Packaging Technologies in Canonical Workflows

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:In Canonical Workflow Framework for Research (CWFR) “packages” are relevant in two different directions. In data science, workflows are in general being executed on a set of files which have been aggregated for specific purposes, such as for training a model in deep learning. We call this type of “package” a data collection and its aggregation and metadata description is motivated by research interests. The other type of “packages” relevant for CWFR are supposed to represent workflows in a self-describing and self-contained way for later execution. In this paper, we will review different packaging technologies and investigate their usability in the context of CWFR. For this purpose, we draw on an exemplary use case and show how packaging technologies can support its realization. We conclude that packaging technologies of different flavors help on providing inputs and outputs for workflow steps in a machine-readable way, as well as on representing a workflow and all its artifacts in a self-describing and self-contained way

  • Galaxy: A Decade of Realising CWFR Concepts

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:

    Despite recent encouragement to follow the FAIR principles, the day-to-day research practices have not changed substantially. Due to new developments and the increasing pressure to apply best practices, initiatives to improve the efficiency and reproducibility of scientific workflows are becoming more prevalent. In this article, we discuss the importance of well-annotated tools and the specific requirements to ensure reproducible research with FAIR outputs. We detail how Galaxy, an open-source workflow management system with a web-based interface, has implemented the concepts that are put forward by the Canonical Workflow Framework for Research (CWFR), whilst minimising changes to the practices of scientific communities. Although we showcase concrete applications from two different domains, this approach is generalisable to any domain and particularly useful in interdisciplinary research and science-based applications.

  • Making Canonical Workflow Building Blocks Interoperable across Workflow Languages

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:We introduce the concept of Canonical Workflow Building Blocks (CWBB), a methodology of describing and wrapping computational tools, in order for them to be utilised in a reproducible manner from multiple workflow languages and execution platforms. The concept is implemented and demonstrated with the BioExcel Building Blocks library (BioBB), a collection of tool wrappers in the field of computational biomolecular simulation. Interoperability across different workflow languages is showcased through a protein Molecular Dynamics setup transversal workflow, built using this library and run with 5 different Workflow Manager Systems (WfMS). We argue such practice is a necessary requirement for FAIR Computational Workflows and an element of Canonical Workflow Frameworks for Research (CWFR) in order to improve widespread adoption and reuse of computational methods across workflow language barriers.

  • The Specimen Data Refinery: A Canonical Workflow Framework and FAIR Digital Object Approach to Speeding up Digital Mobilisation of Natural History Collections

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:A key limiting factor in organising and using information from physical specimens curated in natural science collections is making that information computable, with institutional digitization tending to focus more on imaging the specimens themselves than on efficiently capturing computable data about them. Label data are traditionally manually transcribed today with high cost and low throughput, rendering such a task constrained for many collection-holding institutions at current funding levels. We show how computer vision, optical character recognition, handwriting recognition, named entity recognition and language translation technologies can be implemented into canonical workflow component libraries with findable, accessible, interoperable, and reusable (FAIR) characteristics. These libraries are being developed in a cloud#2; based workflow platform—the ‘Specimen Data Refinery’ (SDR)—founded on Galaxy workflow engine, Common Workflow Language, Research Object Crates (RO-Crate) and WorkflowHub technologies. The SDR can be applied to specimens’ labels and other artefacts, offering the prospect of greatly accelerated and more accurate data capture in computable form. Two kinds of FAIR Digital Objects (FDO) are created by packaging  outputs of SDR workflows and workflow components as digital objects with metadata, a persistent identifier, and a specific type definition. The first kind of FDO are computable Digital Specimen (DS) objects that can be consumed/produced by workflows, and other applications. A single DS is the input data structure submitted to a workflow that is modified by each workflow component in turn to produce a refined DS at the end. The Specimen Data Refinery provides a library of such components that can be used individually, or in series. To cofunction, each library component describes the fields it requires from the DS and the fields it will in turn populate or enrich. The second kind of FDO, RO-Crates gather and archive the diverse set of digital and real-world resources, configurations, and actions (the provenance) contributing to a unit of research work, allowing that work to be faithfully recorded and reproduced. Here we describe the Specimen Data Refinery with its motivating requirements, focusing on what is essential in the creation of canonical workflow component libraries and its conformance with the requirements of an emerging FDO Core Specification being developed by the FDO Forum.

  • Reproducible Research Publication Workflow: A Canonical Workflow Framework and FAIR Digital Object Approach to Quality Research Output

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要:In this paper we present the Reproducible Research Publication Workflow (RRPW) as an example of how generic canonical workflows can be applied to a specific context. The RRPW includes essential steps between submission and final publication of the manuscript and the research artefacts (i.e., data, code, etc.) that underlie the scholarly claims in the manuscript. A key aspect of the RRPW is the inclusion of artefact review and metadata creation as part of the publication workflow. The paper discusses a formalized technical structure around a set of canonical steps which helps codify and standardize the process for researchers, curators, and publishers. The proposed application of canonical workflows can help achieve the goals of improved transparency and reproducibility, increase FAIR compliance of all research artefacts at all steps, and facilitate better exchange of annotated and machine-readable metadata.