• Star formation history and transition epoch of cluster galaxies based on the Horizon-AGN simulation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cluster galaxies exhibit substantially lower star formation rates than field galaxies today, but it is conceivable that clusters were sites of more active star formation in the early universe. Herein, we present an interpretation of the star formation history (SFH) of group/cluster galaxies based on the large-scale cosmological hydrodynamic simulation, Horizon-AGN. We find that massive galaxies in general have small values of e-folding timescales of star formation decay (i.e., ``mass quenching'') regardless of their environment, whilst low-mass galaxies exhibit prominent environmental dependence. In massive host halos (i.e., clusters), the e-folding timescales of low-mass galaxies are further decreased if they reside in such halos for a longer period of time. This ``environmental quenching'' trend is consistent with the theoretical expectation from ram pressure stripping. Furthermore, we define a ``transition epoch'' as where cluster galaxies become less star-forming than field galaxies. The transition epoch of group/cluster galaxies varies according to their stellar and host cluster halo masses. Low-mass galaxies in massive clusters show the earliest transition epoch of $\sim 7.6$ Gyr ago in lookback time. However, it decreases to $\sim 5.2$ Gyr for massive galaxies in low-mass clusters. Based on our findings, we can describe cluster galaxy's SFH with regard to the cluster halo-to-stellar mass ratio.

  • Spectral analysis of a parsec-scale jet in M87: Observational constraint on the magnetic field strengths in the jet

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Because of its proximity and the large size of its black hole, M87 is one of the best targets for studying the launching mechanism of active galactic nucleus jets. Currently, magnetic fields are considered to be an essential factor in the launching and accelerating of the jet. However, current observational estimates of the magnetic field strength of the M87 jet are limited to the innermost part of the jet or to HST-1. No attempt has yet been made to measure the magnetic field strength in between. We aim to infer the magnetic field strength of the M87 jet out to a distance of several thousand $r_s$ by tracking the distance-dependent changes in the synchrotron spectrum of the jet from high-resolution very long baseline interferometry observations. In order to obtain high-quality spectral index maps, quasi-simultaneous observations at 22 and 43 GHz were conducted using the KVN and VERA Array (KaVA) and the VLBA. We compared the spectral index distributions obtained from the observations with a model and placed limits on the magnetic field strengths as a function of distance. The overall spectral morphology is broadly consistent over the course of these observations. The observed synchrotron spectrum rapidly steepens from $\alpha_{22-43 GHz}$ ~ -0.7 at ~ 2 mas to $\alpha_{22-43 GHz}$ ~ -2.5 at ~ 6 mas. A spectral index model in which nonthermal electron injections inside the jet decrease with distance can adequately reproduce the observed trend. This suggests the magnetic field strength of the jet at a distance of 2 - 10 mas (~ 900 $r_s$ - ~ 4500 $r_s$ in the deprojected distance) has a range of $B=(0.3 - 1.0 G)(z/2 mas)^{-0.73}$. Extrapolating to the EHT scale yields consistent results, suggesting that the majority of the magnetic flux of the jet near the black hole is preserved out to ~ 4500 $r_s$ without significant dissipation.