• Numerical and Theoretical Investigations of Heat Transfer Characteristics in Helium–Xenon Cooled

    分类: 物理学 >> 核物理学 提交时间: 2023-09-07

    摘要:Helium–xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources. To examine the convective heat transfer behavior of helium–xenon gas mixtures in a core environment, numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions. Validated numerical methods are used to determine the effect and mechanisms of power and its distribution, inlet temperature and velocity, and outlet pressure on the distribution and change trend of the axial Nusselt number. Furthermore, a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution correlation for the Nusselt number of the coolant channel, under the assumption of a cosine distribution for the axial power. Based on the simulation results, the correlation coefficients are determined, and a semi-empirical relationship is identified under the corresponding operating conditions. The correlation derived in this study is consistent with the simulations, with an average relative error of 5.3% under the operating conditions. Finally, to improve the accuracy of the predictions near the entrance, a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation. The new correlation reduces the average relative error to 2.9% and maintains satisfactory accuracy throughout the entire axial range of the channel, thereby demonstrating its applicability to turbulent heat transfer calculations for helium–xenon gas mixtures within the core environment. These findings provide valuable insights into the convective heat transfer behavior of a helium–xenon gas mixture in a core environment.