• Clustered Formation of Massive Stars within an Ionized Rotating Disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present ALMA observations with a 800 au resolution and radiative-transfer modelling of the inner part ($r\approx6000$ au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultra-compact (UC) HII region G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The MCMC fits to the data give total stellar masses $M_\star$ from 120 to $200~M_\odot$, with much smaller ionized-gas masses $M_\mathrm{ion-gas} = 0.2$ to $0.25~M_\odot$. The stellar mass is distributed within the gravitational radius $R_g\approx 1000$ to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation is $i = 49$ to $56~\deg$. Radial motions at radii $r > R_g$ converge to $v_{r,0} \approx 8.7$ km/s, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars with $M_\mathrm{star} = 32$ to $60~M_\odot$, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic Center. Stellar interactions are likely to occur within the next Myr.

  • CMZoom III: Spectral Line Data Release

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present an overview and data release of the spectral line component of the SMA Large Program, \textit{CMZoom}. \textit{CMZoom} observed $^{12}$CO(2-1), $^{13}$CO(2-1) and C$^{18}$O(2-1), three transitions of H$_{2}$CO, several transitions of CH$_{3}$OH, two transitions of OCS and single transitions of SiO and SO, within gas above a column density of N(H$_2$)$\ge 10^{23}$\,cm$^{-2}$ in the Central Molecular Zone (CMZ; inner few hundred pc of the Galaxy). We extract spectra from all compact 1.3\,mm \emph{CMZoom} continuum sources and fit line profiles to the spectra. We use the fit results from the H$_{2}$CO 3(0,3)-2(0,2) transition to determine the source kinematic properties. We find $\sim 90$\% of the total mass of \emph{CMZoom} sources have reliable kinematics. Only four compact continuum sources are formally self-gravitating. The remainder are consistent with being in hydrostatic equilibrium assuming that they are confined by the high external pressure in the CMZ. Based on the mass and density of virially bound sources, and assuming star formation occurs within one free-fall time with a star formation efficiency of $10\% - 75\%$, we place a lower limit on the future embedded star-formation rate of $0.008 - 0.06$\,M$_{\odot}$\,yr$^{-1}$. We find only two convincing proto-stellar outflows, ruling out a previously undetected population of very massive, actively accreting YSOs with strong outflows. Finally, despite having sufficient sensitivity and resolution to detect high-velocity compact clouds (HVCCs), which have been claimed as evidence for intermediate mass black holes interacting with molecular gas clouds, we find no such objects across the large survey area.