• Study on laser shocking of melt pool in Laser Additive Manufacturing of FeCoCrNi High-Entropy Alloys

    分类: 机械工程 >> 机械制造自动化 提交时间: 2022-05-31

    摘要:

    With growing interest in Laser Additive Manufacturing (LAM) of High-entropy alloys (HEAs) during most recent years, the design of compositional elements and process strategies are primary methods to overcome undesirable microstructures and defects. Here we propose a new approach, a novel real-time Laser Shocking of Melt Pool (LSMP), to obtain melt pool modifications for yielding HEAs with desired characteristics. LSMP utilizes a pulsed laser shocking a liquid melt pool caused by a continuous wave laser, enabling non-destructive and real-time modulations for high-performance HEAs. The numerical simulation reveals the convection mechanism of the melt pool in the LSMP process, and the intervention of the pulsed laser promotes melt pool flow type to convert the Marangoni effect into a multi-convective ring, which accelerates melt pool flow and inhibits columnar crystal growth. Experimental results show the evolution law of the microstructure in the LSMP process. The microstructure of CrFeCoNi HEAs undergoes a Columnar-Equiaxed Transition (CET), and higher hardness is obtained. Laser shock is demonstrated to be an effective in-situ modulative tool for controlled additive manufacturing.