分类: 核科学技术 >> 辐射物理与技术 提交时间: 2023-06-01
摘要:
分类: 光学 >> 量子光学 提交时间: 2023-02-24
摘要:Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, low cost, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, most works have focused on either acoustic resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we develop a gas sensor based on doubly resonant PAS in which the acoustic and optical waves are simultaneously enhanced using combined optical and acoustic resonators in a centimeter-long configuration. Not only the lower detection limit is enhanced by the double standing waves, but also the upper detection limit is expanded due to the short resonators. As an example, we developed a sensor by detecting acetylene (C2H2), achieving a noise equivalent absorption of 5.7*10-13 cm-1 and a dynamic range of eight orders. Compared to the state-of-the-art PAS gas sensors, the developed sensor increases the sensitivity by two orders of magnitude and extends the dynamic range by three orders of magnitude. Besides, a laser-cavity-molecule locking strategy is proposed to provide additional flexibility of fast gas detection.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:We present 127 new transit light curves for 39 hot Jupiter systems, obtained over the span of five years by two ground-based telescopes. A homogeneous analysis of these newly collected light curves together with archived spectroscopic, photometric, and Doppler velocimetric data using EXOFASTv2 leads to a significant improvement in the physical and orbital parameters of each system. All of our stellar radii are constrained to accuracies of better than 3\%. The planetary radii for 37 of our 39 targets are determined to accuracies of better than $5\%$. Compared to our results, the literature eccentricities are preferentially overestimated due to the Lucy-Sweeney bias. Our new photometric observations therefore allow for significant improvement in the orbital ephemerides of each system. Our correction of the future transit window amounts to a change exceeding $10\,{\rm min}$ for ten targets at the time of JWST's launch, including a $72\,{\rm min}$ change for WASP-56. The measured transit mid-times for both literature light curves and our new photometry show no significant deviations from the updated linear ephemerides, ruling out in each system the presence of companion planets with masses greater than $0.39 - 5.0\, rm M_{\oplus}$, $1.23 - 14.36\, \rm M_{\oplus}$, $1.65 - 21.18\, \rm M_{\oplus}$, and $0.69 - 6.75\, \rm M_{\oplus}$ near the 1:2, 2:3, 3:2, and 2:1 resonances with the hot Jupiters , respectively, at a confidence level of $\pm 1\,\sigma$. The absence of resonant companion planets in the hot Jupiter systems is inconsistent with the conventional expectation from disk migration.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Transit Timing Variation (TTV) of hot Jupiters provides direct observational evidence of planet tidal dissipation. Detecting tidal dissipation through TTV needs high precision transit timings and long timing baselines. In this work, we predict and discuss the potential scientific contribution of SiTian Survey in detecting and analyzing exoplanet TTV. We develop a tidal dissipation detection pipeline for SiTian Survey that aims at time-domain astronomy with 72 1-meter optical telescopes. The pipeline includes the modules of light curve deblending, transit timing obtaining, and TTV modeling. SiTian is capable to detect more than 25,000 exoplanets among which we expect $\sim$50 sources showing evidence of tidal dissipation. We present detection and analysis of tidal dissipating targets, based on simulated SiTian light curves of XO-3b and WASP-161b. The transit light curve modeling gives consistent results within 1$\sigma$ to input values of simulated light curves. Also, the parameter uncertainties predicted by Monte-Carlo Markov Chain are consistent with the distribution obtained from simulating and modeling the light curve 1000 times. The timing precision of SiTian observations is $\sim$ 0.5 minutes with one transit visit. We show that differences between TTV origins, e.g., tidal dissipation, apsidal precession, multiple planets, would be significant, considering the timing precision and baseline. The detection rate of tidal dissipating hot Jupiters would answer a crucial question of whether the planet migrates at an early formation stage or random stages due to perturbations, e.g., planet scattering, secular interaction. SiTian identified targets would be constructive given that the sample would extend tenfold.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Rotation periods of 53 small (diameters $2 < D < 40$ km) Jupiter Trojans (JTs) were derived using the high-cadence light curves obtained by the FOSSIL phase I survey, a Subaru/Hyper Suprime-Cam intensive program. These are the first reported periods measured for JTs with $D < 10$ km. We found a lower limit of the rotation period near 4 hr, instead of the previously published result of 5 hr (Ryan et al. 2017; Szabo et al. 2017, 2020) found for larger JTs. Assuming a rubble-pile structure for JTs, a bulk density of 0.9 gcm$^{-3}$ is required to withstand this spin rate limit, consistent with the value $0.8-1.0$ gcm$^{-3}$ (Marchis et al. 2006; Mueller et al. 2010; Buie et al. 2015; Berthier et al. 2020) derived from the binary JT system, (617) Patroclus-Menoetius system.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Very little is known about the young planet population because the detection of small planets orbiting young stars is obscured by the effects of stellar activity and fast rotation which mask planets within radial velocity and transit data sets. The few planets that have been discovered in young clusters generally orbit stars too faint for any detailed follow-up analysis. Here we present the characterization of a new mini-Neptune planet orbiting the bright (V=9) and nearby K2 dwarf star, HD 18599. The planet candidate was originally detected in TESS light curves from Sectors 2, 3, 29, and 30, with an orbital period of 4.138~days. We then used HARPS and FEROS radial velocities, to find the companion mass to be 25.5$\pm$4.6~M$_\oplus$. When we combine this with the measured radius from TESS, of 2.70$\pm$0.05~R$_\oplus$, we find a high planetary density of 7.1$\pm$1.4~g cm$^{-3}$. The planet exists on the edge of the Neptune Desert and is the first young planet (300 Myr) of its type to inhabit this region. Structure models argue for a bulk composition to consist of 23% H$_2$O and 77% Rock and Iron. Future follow-up with large ground- and space-based telescopes can enable us to begin to understand in detail the characteristics of young Neptunes in the galaxy.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:We report the discovery and characterization of a transiting warm sub-Neptune planet around the nearby bright ($V=8.75$ mag, $K=7.15$ mag) solar twin HD 183579, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located $56.8\pm0.1$ pc away with a radius of $R_{\ast}=0.97\pm0.02\ R_{\odot}$ and a mass of $M_{\ast}=1.03\pm0.05\ M_{\odot}$. We confirm the planetary nature by combining space and ground-based photometry, spectroscopy, and imaging. We find that HD 183579b (TOI-1055b) has a radius of $R_{p}=3.53\pm0.13\ R_{\oplus}$ on a $17.47$ day orbit with a mass of $M_{p}=11.2\pm5.4\ M_{\oplus}$ ($3\sigma$ mass upper limit of $27.4\ M_{\oplus}$). HD 183579b is the fifth brightest known sub-Neptune planet system in the sky, making it an excellent target for future studies of the interior structure and atmospheric properties. By performing a line-by-line differential analysis using the high resolution and signal-to-noise ratio HARPS spectra, we find that HD 183579 joins the typical solar twin sample, without a statistically significant refractory element depletion.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:We validate the presence of a two-planet system orbiting the 0.15--1.4 Gyr K4 dwarf TOI 560 (HD 73583). The system consists of an inner moderately eccentric transiting mini-Neptune (TOI 560 b, $P = 6.3980661^{+0.0000095}_{-0.0000097}$ days, $e=0.294^{+0.13}_{-0.062}$, $M= 0.94^{+0.31}_{-0.23}M_{Nep}$) initially discovered in the Sector 8 \tess\ mission observations, and a transiting mini-Neptune (TOI 560 c, $P = 18.8805^{+0.0024}_{-0.0011}$ days, $M= 1.32^{+0.29}_{-0.32}M_{Nep}$) discovered in the Sector 34 observations, in a rare near-1:3 orbital resonance. We utilize photometric data from \tess\, \textit{Spitzer}, and ground-based follow-up observations to confirm the ephemerides and period of the transiting planets, vet false positive scenarios, and detect the photo-eccentric effect for TOI 560 b. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with the iSHELL spectrograph at the NASA Infrared Telescope Facility and the HIRES Spectrograph at Keck Observatory to validate the planetary nature of these signals, which we combine with published PFS RVs from Magellan Observatory. We detect the masses of both planets at $> 3-\sigma$ significance. We apply a Gaussian process (GP) model to the \tess\ light curves to place priors on a chromatic radial velocity GP model to constrain the stellar activity of the TOI 560 host star, and confirm a strong wavelength dependence for the stellar activity demonstrating the ability of NIR RVs in mitigating stellar activity for young K dwarfs. TOI 560 is a nearby moderately young multi-planet system with two planets suitable for atmospheric characterization with James Webb Space Telescope (JWST) and other upcoming missions. In particular, it will undergo six transit pairs separated by $<$6 hours before June 2027.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age <1 Gyr have been found to host transiting exoplanets. Here we present the discovery and validation of a sub-Neptune around HD 18599, a young (300 Myr), nearby (d=40 pc) K star. We validate the transiting planet candidate as a bona fide planet using data from the TESS, Spitzer, and Gaia missions, ground-based photometry from IRSF, LCO, PEST, and NGTS, speckle imaging from Gemini, and spectroscopy from CHIRON, NRES, FEROS, and Minerva-Australis. The planet has an orbital period of 4.13 d, and a radius of 2.7Rearth. The RV data yields a 3-sigma mass upper limit of 30.5Mearth which is explained by either a massive companion or the large observed jitter typical for a young star. The brightness of the host star (V~9 mag) makes it conducive to detailed characterization via Doppler mass measurement which will provide a rare view into the interior structure of young planets.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.
分类: 光学 >> 量子光学 提交时间: 2023-02-19
摘要:Topological nodal rings as the simplest topological nodal lines recently have been extensively studied in optical lattices. However, the realization of complex nodal line structures like nodal chains in this system remains a crucial challenge. Here we propose an experimental scheme to realize and detect topological nodal chains in optical Raman lattices. Specifically, we construct a three-dimensional optical Raman lattice which supports next nearest-neighbor spin-orbit couplings and hosts topological nodal chains in its energy spectra. Interestingly, the realized nodal chains are protected by mirror symmetry and could be tuned into a large variety of shapes, including the inner and outer nodal chains. We also demonstrate that the shapes of the nodal chains could be detected by measuring spin polarizations. Our study opens up the possibility of exploring topological nodal-chain semimetal phases in optical lattices.
分类: 光学 >> 量子光学 提交时间: 2023-02-19
摘要:Machine learning methods have revolutionized the discovery process of new molecules and materials. However, the intensive training process of neural networks for molecules with ever-increasing complexity has resulted in exponential growth in computation cost, leading to long simulation time and high energy consumption. Photonic chip technology offers an alternative platform for implementing neural networks with faster data processing and lower energy usage compared to digital computers. Photonics technology is naturally capable of implementing complex-valued neural networks at no additional hardware cost. Here, we demonstrate the capability of photonic neural networks for predicting the quantum mechanical properties of molecules. To the best of our knowledge, this work is the first to harness photonic technology for machine learning applications in computational chemistry and molecular sciences, such as drug discovery and materials design. We further show that multiple properties can be learned simultaneously in a photonic chip via a multi-task regression learning algorithm, which is also the first of its kind as well, as most previous works focus on implementing a network in the classification task.