• Influence of fine structures on gyrosynchrotron emission of flare loops modulated by sausage modes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Sausage modes are one leading mechanism for interpreting short period quasi-periodic pulsations (QPPs) of solar flares. Forward modeling their radio emission is crucial for identifying sausage modes observationally and for understanding their connections with QPPs. Using the numerical output from three-dimensional magnetohydrodynamic (MHD) simulations, we forward model the gyrosynchrotron (GS) emission of flare loops modulated by sausage modes and examine the influence of loop fine structures. The temporal evolution of the emission intensity is analyzed for an oblique line of sight crossing the loop center. We find that the low- and high-frequency intensities oscillate in-phase at the period of sausage modes for models with or without fine structures. For low-frequency emissions where the optically thick regime arises, the modulation magnitude of the intensity is dramatically reduced by the fine structures at some viewing angles. On the contrary, for high-frequency emissions where the optically thin regime holds, the effect of fine structures or viewing angle is marginal. Our results show that the periodic intensity variations of sausage modes are not wiped out by the fine structures, and sausage modes remains a promising candidate mechanism for QPPs even when flare loops are fine-structured.

  • Fast Sausage Oscillations in Coronal Loops with Fine Structures

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Fast sausage modes (FSMs) in flare loops have long been invoked to account for rapid quasi-periodic pulsations (QPPs) with periods of order seconds in flare lightcurves. However, most theories of FSMs in solar coronal cylinders assume a perfectly axisymmetric equilibrium, an idealized configuration apparently far from reality. In particular, it remains to examine whether FSMs exist in coronal cylinders with fine structures. Working in the framework of ideal magnetohydrodynamics (MHD), we numerically follow the response to an axisymmetric perturbation of a coronal cylinder for which a considerable number of randomly distributed fine structures are superposed on an axisymmetric background. The parameters for the background component are largely motivated by the recent IRIS identification of a candidate FSM in Fe XXI 1354 \AA~observations. We find that the composite cylinder rapidly settles to an oscillatory behavior largely compatible with a canonical trapped FSM. This happens despite that kink-like motions develop in the fine structures. We further synthesize the Fe XXI 1354 \AA~emissions, finding that the transverse Alfv\'en time characterizes the periodicities in the intensity, Doppler shift, and Doppler width signals. Distinct from the case without fine structuring, a non-vanishing Doppler shift is seen even at the apex. We conclude that density-enhanced equilibria need not be strictly axisymmetric to host FSM-like motions in general, and FSMs remain a candidate interpretation for rapid QPPs in solar flares.

  • Resonant Damping of Kink Modes in Solar Coronal Slabs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We examine resonantly damped kink modes in straight coronal slabs, paying special attention to the effects of the formulation for the transverse density distribution ("profile"). We work in the framework of pressure-less, gravity-free, resistive magnetohydrodynamics, and we adopt the dissipative-eigenmode perspective. The density profile is restricted to be one-dimensional, but nonetheless allowed to take a generic form characterized by a continuous transition layer connecting a uniform interior to a uniform exterior. A dispersion relation (DR) is derived in the thin-boundary limit, yielding analytical expressions for the eigenfrequencies that generalize known results in various aspects. We find that the analytical rather than the numerical solutions to the thin-boundary DR serve better the purpose for validating our self-consistent resistive solutions. More importantly, the eigenfrequencies are found to be sensitive to profile specifications, the ratio of the imaginary to the real part readily varying by a factor of two when one profile is used in place of another. Our eigenmode computations are also examined in the context of impulsively excited kink waves, suggesting the importance of resonant absorption for sufficiently oblique components when the spatial scale of the exciter is comparable to the slab half-width.

  • Impulsively Generated Kink Wave Trains in Solar Coronal Slabs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We numerically follow the response of density-enhanced slabs to impulsive, localized, transverse velocity perturbations by working in the framework of ideal magnetohydrodynamics (MHD). Both linear and nonlinear regimes are addressed. Kink wave trains are seen to develop along the examined slabs, sharing the characteristics that more oscillatory patterns emerge with time and that the apparent wavelength increases with distance at a given instant. Two features nonetheless arise due to nonlinearity, one being a density cavity close to the exciter and the other being the appearance of shocks both outside and inside the nominal slab. These features may be relevant for understanding the interaction between magnetic structures and such explosive events as coronal mass ejections. Our numerical findings on kink wave trains in solar coronal slabs are discussed in connection with typical measurements of streamer waves.

  • Excitation of Multi-periodic Kink Motions in Solar Flare Loops: Possible Application to Quasi-periodic Pulsations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetohydrodynamic (MHD) waves are often invoked to interpret quasi-periodic pulsations (QPPs) in solar flares. We study the response of a straight flare loop to a kink-like velocity perturbation using three-dimensional MHD simulations and forward model the microwave emissions using the fast gyrosynchrotron code. Kink motions with two periodicities are simultaneously generated,with the long-period component P_L = 57s being attributed to the radial fundamental kink mode and the short-period component P_S=5.8s to the first leaky kink mode. Forward modeling results show that the two-periodic oscillations are detectable in the microwave intensities for some lines of sight. Increasing the beam size to (1")^2 does not wipe out the microwave oscillations. We propose that the first leaky kink mode is a promising candidate mechanism to account for short-period QPPs. Radio telescopes with high spatial resolutions can help distinguish between this new mechanism with such customary interpretations as sausage modes.

  • Oblique Quasi-Kink Modes in Solar Coronal Slabs Embedded in an Asymmetric Magnetic Environment: Resonant Damping, Phase and Group Diagrams

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: There has been considerable interest in magnetoacoustic waves in static, straight, field-aligned, one-dimensional equilibria where the exteriors of a magnetic slab are different between the two sides. We focus on trapped, transverse fundamental, oblique quasi-kink modes in pressureless setups where the density varies continuously from a uniform interior (with density $\rho_{\rm i}$) to a uniform exterior on either side (with density $\rho_{\rm L}$ or $\rho_{\rm R}$), assuming $\rho_{\rm L}\le\rho_{\rm R}\le\rho_{\rm i}$. The continuous structuring and oblique propagation make our study new relative to pertinent studies, and lead to wave damping via the Alfv$\acute{\rm e}$n resonance. We compute resonantly damped quasi-kink modes as resistive eigenmodes, and isolate the effects of system asymmetry by varying $\rho_{\rm i}/\rho_{\rm R}$ from the ``Fully Symmetric'' ($\rho_{\rm i}/\rho_{\rm R}=\rho_{\rm i}/\rho_{\rm L}$) to the ``Fully Asymmetric'' limit ($\rho_{\rm i}/\rho_{\rm R}=1$). We find that the damping rates possess a nonmonotonic $\rho_{\rm i}/\rho_{\rm R}$-dependence as a result of the difference between the two Alfv$\acute{\rm e}$n continua, and resonant absorption occurs only in one continuum when $\rho_{\rm i}/\rho_{\rm R}$ is below some threshold. We also find that the system asymmetry results in two qualitatively different regimes for the phase and group diagrams. The phase and group trajectories lie essentially on the same side (different sides) relative to the equilibrium magnetic field when the configuration is not far from a ``Fully Asymmetric'' (``Fully Symmetric'') one. Our numerical results are understood by making analytical progress in the thin-boundary limit, and discussed for imaging observations of axial standing modes and impulsively excited wavetrains.

  • Three-Dimensional Propagation of Kink Wave Trains in Solar Coronal Slabs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Impulsively excited wave trains are of considerable interest in solar coronal seismology. To our knowledge, however, it remains to examine the three-dimensional (3D) dispersive propagation of impulsive kink waves in straight, field-aligned, symmetric, low-beta, slab equilibria that are structured only in one transverse direction. We offer a study here, starting with an analysis of linear oblique kink modes from an eigenvalue problem perspective. Two features are numerically found for continuous and step structuring alike, one being that the group and phase velocities may lie on opposite sides of the equilibrium magnetic field ($\vec{B}_0$), and the other being that the group trajectories extend only to a limited angle from $\vec{B}_0$. We justify these features by making analytical progress for the step structuring. More importantly, we demonstrate by a 3D time-dependent simulation that these features show up in the intricate interference patterns of kink wave trains that arise from a localized initial perturbation. In a plane perpendicular to the direction of inhomogeneity, the large-time slab-guided patterns are confined to a narrow sector about $\vec{B}_0$, with some wavefronts propagating toward $\vec{B}_0$. We conclude that the phase and group diagrams lay the necessary framework for understanding the complicated time-dependent behavior of impulsive waves.

  • Three-Dimensional Propagation of Kink Wave Trains in Solar Coronal Slabs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Impulsively excited wave trains are of considerable interest in solar coronal seismology. To our knowledge, however, it remains to examine the three-dimensional (3D) dispersive propagation of impulsive kink waves in straight, field-aligned, symmetric, low-beta, slab equilibria that are structured only in one transverse direction. We offer a study here, starting with an analysis of linear oblique kink modes from an eigenvalue problem perspective. Two features are numerically found for continuous and step structuring alike, one being that the group and phase velocities may lie on opposite sides of the equilibrium magnetic field ($\vec{B}_0$), and the other being that the group trajectories extend only to a limited angle from $\vec{B}_0$. We justify these features by making analytical progress for the step structuring. More importantly, we demonstrate by a 3D time-dependent simulation that these features show up in the intricate interference patterns of kink wave trains that arise from a localized initial perturbation. In a plane perpendicular to the direction of inhomogeneity, the large-time slab-guided patterns are confined to a narrow sector about $\vec{B}_0$, with some wavefronts propagating toward $\vec{B}_0$. We conclude that the phase and group diagrams lay the necessary framework for understanding the complicated time-dependent behavior of impulsive waves.

  • Oblique Quasi-Kink Modes in Solar Coronal Slabs Embedded in an Asymmetric Magnetic Environment: Resonant Damping, Phase and Group Diagrams

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: There has been considerable interest in magnetoacoustic waves in static, straight, field-aligned, one-dimensional equilibria where the exteriors of a magnetic slab are different between the two sides. We focus on trapped, transverse fundamental, oblique quasi-kink modes in pressureless setups where the density varies continuously from a uniform interior (with density $\rho_{\rm i}$) to a uniform exterior on either side (with density $\rho_{\rm L}$ or $\rho_{\rm R}$), assuming $\rho_{\rm L}\le\rho_{\rm R}\le\rho_{\rm i}$. The continuous structuring and oblique propagation make our study new relative to pertinent studies, and lead to wave damping via the Alfv$\acute{\rm e}$n resonance. We compute resonantly damped quasi-kink modes as resistive eigenmodes, and isolate the effects of system asymmetry by varying $\rho_{\rm i}/\rho_{\rm R}$ from the ``Fully Symmetric'' ($\rho_{\rm i}/\rho_{\rm R}=\rho_{\rm i}/\rho_{\rm L}$) to the ``Fully Asymmetric'' limit ($\rho_{\rm i}/\rho_{\rm R}=1$). We find that the damping rates possess a nonmonotonic $\rho_{\rm i}/\rho_{\rm R}$-dependence as a result of the difference between the two Alfv$\acute{\rm e}$n continua, and resonant absorption occurs only in one continuum when $\rho_{\rm i}/\rho_{\rm R}$ is below some threshold. We also find that the system asymmetry results in two qualitatively different regimes for the phase and group diagrams. The phase and group trajectories lie essentially on the same side (different sides) relative to the equilibrium magnetic field when the configuration is not far from a ``Fully Asymmetric'' (``Fully Symmetric'') one. Our numerical results are understood by making analytical progress in the thin-boundary limit, and discussed for imaging observations of axial standing modes and impulsively excited wavetrains.

  • Excitation of Multi-periodic Kink Motions in Solar Flare Loops: Possible Application to Quasi-periodic Pulsations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetohydrodynamic (MHD) waves are often invoked to interpret quasi-periodic pulsations (QPPs) in solar flares. We study the response of a straight flare loop to a kink-like velocity perturbation using three-dimensional MHD simulations and forward model the microwave emissions using the fast gyrosynchrotron code. Kink motions with two periodicities are simultaneously generated,with the long-period component P_L = 57s being attributed to the radial fundamental kink mode and the short-period component P_S=5.8s to the first leaky kink mode. Forward modeling results show that the two-periodic oscillations are detectable in the microwave intensities for some lines of sight. Increasing the beam size to (1")^2 does not wipe out the microwave oscillations. We propose that the first leaky kink mode is a promising candidate mechanism to account for short-period QPPs. Radio telescopes with high spatial resolutions can help distinguish between this new mechanism with such customary interpretations as sausage modes.

  • Possible Signature of Sausage Waves in Photospheric Bright Points

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Sausage waves have been frequently reported in solar magnetic structures such as sunspots, pores, and coronal loops. However, they have not been unambiguously identified in photospheric bright points (BPs). Using high-resolution TiO image sequences obtained with the Goode Solar Telescope at the Big Bear Solar Observatory, we analyzed four isolated BPs. It was found that their area and average intensity oscillate for several cycles in an in-phase fashion. The oscillation periods range from 100 to 200 seconds. We interpreted the phase relation as a signature of sausage waves, particularly slow waves, after discussing sausage-wave theory and the opacity effect.

  • Statistical properties of H{\alpha} jets in the polar coronal hole and their implications in coronal activities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Dynamic features, such as chromospheric jets, transition region network jets, coronal plumes and coronal jets, are abundant in the network regions of the solar polar coronal holes. We investigate the relationship between chromospheric jets and coronal activities (e.g., coronal plumes and jets).We analyze observations of a polar coronal hole including the filtergrams that were taken by the New Vacuum Solar Telescope (NVST) at the H{\alpha}-0.6 {\AA}to study the H{\alpha} jets,and the Atmospheric Imaging Assembly (AIA) 171 {\AA} images to follow the evolution of coronal activities. H{\alpha} jets are persistent in the network regions, only some regions (denoted as R1-R5) are rooted with discernible coronal plumes.With an automated method, we identify and track 1 320 H{\alpha} jets in the network regions. We find that the average lifetime, height and ascending speed of the H{\alpha} jets are 75.38 s, 2.67 Mm, 65.60 km s$^{-1}$, respectively. The H{\alpha} jets rooted in R1-R5 are higher and faster than those in the others. We also find that propagating disturbances (PDs) in coronal plumes have a close connection with the H{\alpha} jets. The speeds of 28 out of 29 H{\alpha} jets associated with PDs are about 50 km s$^{-1}$ . In a case of coronal jet, we find that the speeds of both the coronal jet and the H{\alpha} jet are over 150 km s$^{-1}$, suggesting that both cool and hot jets can be coupled together. Based on our analyses, it is evident that more dynamic H{\alpha} jets could release the energies to the corona, which might be the results of the development of Kelvin-Helmholtz instability (KHi) or small-scaled magnetic activities. We suggest that chromospheric jets, transition region network jets and ray-like features in the corona are coherent phenomena, and they are important tunnels for cycling energy and mass in the solar atmosphere.