All Results

Spherical Relativistic Hartree theory in a Woods-Saxon basis

Shan-Gui Zhou Jie Meng P. RingSubjects: Physics >> Nuclear Physics

The Woods-Saxon basis has been suggested to replace the widely used harmonic oscillator basis for solving the relativistic mean field (RMF) theory in order to generalize it to study exotic nuclei. As examples, relativistic Hartree theory is solved for spherical nuclei in a Woods-Saxon basis obtained by solving either the Schro ?dinger equation or the Dirac equation (labelled as SRHSWS and SRHDWS, respectively and SRHWS for both). In SRHDWS, the negative levels in the Dirac Sea must be properly included. The basis in SRHDWS could be smaller than that in SRHSWS which will simplify the deformed problem. The results from SRHWS are compared in detail with those from solving the spherical relativistic Hartree theory in the harmonic oscillator basis (SRHHO) and those in the coordinate space (SRHR). All of these approaches give identical nuclear properties such as total binding energies and root mean square radii for stable nuclei. For exotic nuclei, e.g., 72Ca, SRHWS satisfactorily reproduces the neutron density distribution from SRHR, while SRHHO fails. It is shown that the Woods-Saxon basis can be extended to more complicated situations for exotic nuclei where both deformation and pairing have to be taken into account. |

submitted time
2017-08-22
Hits*1922*，
Downloads*1095*，
Comment
*0*

Spin symmetry in the anti-nucleon spectrum

Shan-Gui Zhou Jie Meng P. RingSubjects: Physics >> Nuclear Physics

We discuss spin and pseudo-spin symmetry in the spectrum of single nucleons and single anti- nucleons in a nucleus. As an example we use relativistic mean field theory to investigate single anti-nucleon spectra. We find a very well developed spin symmetry in single anti-neutron and single anti-proton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in anti-particle spectra and the pseudo-spin symmetry in particle spectra have the same origin. However it turns out that the spin symmetry in anti-nucleon spectra is much better developed than the pseudo-spin symmetry in normal nuclear single particle spectra. |

Neutron halo in deformed nuclei from a relativistic Hartree-Bogoliubov model in a Woods-Saxon basis

S G Zhou; J Meng; P Ring; E G ZhaoSubjects: Physics >> Nuclear Physics

Halo phenomenon in deformed nuclei is studied by using a fully self-consistent deformed relativistic Hartree-Bogoliubov model in a spherical Woods-Saxon basis with the proper asymptotic behavior at large distance from the nuclear center. Taking a deformed neutron-rich and weakly bound nucleus 44Mg as an example and by examining contributions of the halo, deformation effects, and large spatial extensions, we show a decoupling of the halo orbitals from the deformation of the core. |

Microscopic and self-consistent description for neutron halo in deformed nuclei

Lulu Li; Jie Meng; P. Ring; En-Guang Zhao; Shan-Gui ZhouSubjects: Physics >> Nuclear Physics

AdeformedrelativisticHartree-Bogoliubovtheoryincontinuumhasbeendevelopedfor the study of neutron halos in deformed nuclei and the halo phenomenon in deformed weakly bound nuclei is investigated. Magnesium and neon isotopes are studied and some results are presented for the deformed neutron-rich and weakly bound nuclei 44Mg and 36Ne. The core of the former nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed. |

[1 Pages/ 4 Totals]