• An inhibited laser

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Traditional lasers function using resonant cavities, in which the round-trip optical path is exactly equal to an integer multiple of the intracavity wavelengths to constructively enhance the spontaneous emission rate. By taking advantage of the enhancement from the resonant cavity, the narrowest sub-10-mHz-linewidth laser and a $10^{-16}$-fractional-frequency-stability superradiant active optical clock (AOC) have been achieved. However, a laser with atomic spontaneous radiation being destructively inhibited in an anti-resonant cavity, where the atomic resonance is exactly between two adjacent cavity resonances, has not been reported. Herein, we experimentally demonstrate inhibited stimulated emission and termed it an inhibited laser. Compared with traditional superradiant AOCs, which exhibit superiority in terms of the high suppression of cavity noise, the suppression of the cavity-pulling effect of an inhibited laser can be further improved by a factor of $(2F/pi)^2$, i.e., 2.07 in this work, which was improved from 26 to 53 times. This study will guide further development of AOCs with better stability, and thus, it is significant for quantum metrology and may lead to new research in the laser physics and cavity quantum electrodynamics fields.

  • A Voigt laser operating on $^{87}$Rb 780 nm transition

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report the development of laser systems -- a "Voigt laser" -- using a Voigt anomalous dispersion optical filter as the frequency-selective element, working at the wavelength of 780 nm of $^{87}$Rb-D2 resonance line. Compared with Faraday anomalous dispersion optical filter, the Voigt anomalous dispersion optical filter can generate a stronger and more uniform magnetic field with a compact size of magnet, and obtains a transmission spectrum with narrower linewidth and more stable lineprofile. In this case, the frequency stability of the Voigt laser reaches 5$\times$10$^{-9}$ at the averaging time of 200 s, and the wavelength fluctuation of 8-hours free operation is $\pm$0.1 pm. Besides, the Voigt laser has greater immunity to diode current than the Faraday laser, with a wavelength fluctuation of $\pm$0.5 pm in the current range from 73 mA to 150 mA. Finally, the Voigt laser frequency can be controlled by the cell temperature of the Voigt optical filter, which is expected to achieve a frequency detuning of 20 GHz. Consequently, the Voigt laser, whose frequency could correspond to the atomic transition frequency by tuning the cell temperature, obtains good robustness to the current and temperature fluctuation of laser diode, and could realize a compact optical standard for precise measurement once stabilized by modulation transfer spectroscopy.