按提交时间
按主题分类
按作者
按机构
  • Grazing alters sandy soil greenhouse gas emissions in a sand-binding area of the Hobq Desert, China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2022-06-13 合作期刊: 《干旱区科学》

    摘要:

    Abstract: Deserts are sensitive to environmental changes caused by human interference and are prone to degradation. Revegetation can promote the reversal of desertification and the subsequent formation of fixed sand. However, the effects of grazing, which can cause the ground-surface conditions of fixed sand to further deteriorate and result in re-desertification, on the greenhouse gas (GHG) fluxes from soils remain unknown. Herein, we investigated GHG fluxes in the Hobq Desert, Inner Mongolia Autonomous Region of China, at the mobile (desertified), fixed (vegetated), and grazed (re-desertified) sites from January 2018 to December 2019. We analyzed the response mechanism of GHG fluxes to micrometeorological factors and the variation in global warming potential (GWP). CO2 was emitted at an average rate of 4.2, 3.7, and 1.1 mmol/(m2•h) and N2O was emitted at an average rate of 0.19, 0.15, and 0.09 µmol/(m2•h) at the grazed, fixed, and mobile sites, respectively. Mean CH4 consumption was as follows: fixed site (2.9 µmol/(m2•h))>grazed site (2.7 µmol/(m2•h))>mobile site (1.1 µmol/(m2•h)). GHG fluxes varied seasonally, and soil temperature (10 cm) and soil water content (30 cm) were the key micrometeorological factors affecting the fluxes. The changes in the plant and soil characteristics caused by grazing resulted in increased soil CO2 and N2O emissions and decreased CH4 absorption. Grazing also significantly increased the GWP of the soil (P<0.05). This study demonstrates that grazing on revegetated sandy soil can cause re-desertification and significantly increase soil carbon and nitrogen leakage. These findings could be used to formulate informed policies on the management and utilization of desert ecosystems.

  • Retinotopic Changes in the Gray Matter Volume and Cerebral Blood Flow in the Primary Visual Cortex of Patients With Primary Open-Angle Glaucoma

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-15

    摘要:PURPOSE. To assess the cortical structure and cerebral blood flow changes in the brain of patients with primary open-angle glaucoma (POAG). METHODS. High-resolution anatomical magnetic resonance imaging (MRI) and arterial spin labeling (ASL)-MRI were performed in 23 POAG patients and 29 controls. Patients were further divided into early-moderate and advanced groups based on mean deviation (MD) cutoff of 12 dB. A baseline scan was obtained and repeated during visual stimulation to the central preserved visual field in the more affected eye of POAG patients and a randomly selected eye of controls. Gray matter volume (GMV) and cerebral blood flow (CBF) throughout the whole brain were compared between patients and controls. RESULTS. Compared to controls, a region with significant reduction of GMV was detected in the anterior calcarine fissure of advanced POAG patients (P < 0.001, voxels = 503, 1698 mm3). Patients with early-moderate POAG had resting CBF similar to that of controls. However, a region with marked CBF decrease was detected in the anterior calcarine fissure of advanced POAG patients (P < 0.001, voxels = 1687, 13,496 mm(3)). The region with CBF reduction in advanced POAG showed good colocalization with the region with GMV decrease in this group. Following visual stimulation, patients with advanced POAG showed significantly lower increase in CBF in the occipital lobes (P < 0.001, voxels = 112, 896 mm(3)) as compared to controls (P < 0.001, voxels = 1880, 15,040 mm(3)) and early-moderate POAG (P < 0.001, voxels = 2233, 17,864 mm(3)). CONCLUSIONS. Primary open-angle glaucoma patients demonstrate a disease severity-dependent retinotopic pattern of cortical atrophy and CBF abnormalities in the visual cortex. Cerebral blood flow may be a potential biomarker for the brain involvement in glaucoma.

  • Segmented TOF at 7 T MRI: Technique and clinical applications

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要:Purpose: Time-of-flight (TOF) MR angiography has an advantage of contrast and resolution in ultra-high field (7 T) MRI systems. However, increased specific absorption rate (SAR) prohibits the application of spatial saturation band, leading to venous contamination in maximum intensity projection (MIP) images. Methods: A segmented k-space filling scheme with sparse venous saturation pulses was developed for 7 T TOF-MRA. The effectiveness of the segmented TOF sequence was verified by Bloch equation simulation and experiments on 3 T. The protocol on 7 T was optimized and applied for healthy volunteers and patients with vascular diseases. Results: Segmented TOF achieved equivalent contrast and venous suppression effect as conventional methods, while SAR values had a remarkable reduction and obeyed the limit of a 7 T MRI system. The decreased number of saturation pulses allowed shorter acquisition time than existing solutions. The comparison of segmented TOF and conventional TOF revealed flow direction in vascular diseases. Conclusion: Segmented TOF is proved to be a time-efficient way to achieve high-resolution angiograms without venous contamination at ultra-high field. The sequence holds strong promise for non-contrast clinical diagnosis on cerebrovascular diseases. (C) 2015 Elsevier Inc. All rights reserved.

  • Difference of language cortex reorganization between cerebral arteriovenous malformations, cavernous malformations, and gliomas: a functional MRI study

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-05

    摘要:The authors attempted to demonstrate the difference in language cortex reorganization between cerebral malformations (AVMs), cavernous malformations (CMs), and gliomas by blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. Clinical and imaging data of 27 AVM patients (AVM-L group), 29 CM patients (CM-L group), and 20 glioma patients (Glioma-L group) were retrospectively reviewed, with lesions overlying the left inferior frontal gyrus (Broca area). As a control, patients with lesions involving the right inferior frontal gyrus were also enrolled, including 14 AVM patients (AVM-R group), 20 CM patients (CM-R group), and 14 glioma patients (Glioma-R group). All patients were right-handed. Lateralization indices (LI) of BOLD signal activations were calculated separately for Broca and Wernicke areas. In AVM-L group, right-sided lateralization of BOLD signals was observed in 10 patients (37.0 %), including 6 in the Broca area alone, 1 in the Wernicke area alone, and 3 in both areas. Three patients (10.3 %) of CM-L group showed right-sided lateralization in both Broca and Wernicke areas, and 1 patient (5.0 %) of Glioma-L group had right-sided lateralization in the Wernicke area alone. A significant difference of right-sided lateralization was observed between the AVM-L group and CM-L group (P = 0.018) and also between the AVM-L group and Glioma-L group (P = 0.027). No patient in AVM-R, CM-R, or Glioma-R groups showed right-sided lateralization. Language cortex reorganization may occur in AVM, CM, and glioma patients when the traditional language cortex was involved by lesions, but the potential of reorganization for CM and glioma patients seems to be insufficient compared with AVM patients.