分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Radial velocity (RV) is among the most fundamental physical quantities obtainable from stellar spectra and is rather important in the analysis of time-domain phenomena. The LAMOST Medium-Resolution Survey (MRS) DR7 contains 5 million single-exposure stellar spectra at spectral resolution $R\sim7\,500$. However, the temporal variation of the RV zero-points (RVZPs) of the MRS survey, which makes the RVs from multiple epochs inconsistent, has not been addressed. In this paper, we measure the RVs of the 3.8 million single-exposure spectra (for 0.6 million stars) with signal-to-noise ratio (SNR) higher than 5 based on cross-correlation function (CCF) method, and propose a robust method to self-consistently determine the RVZPs exposure-by-exposure for each spectrograph with the help of \textit{Gaia} DR2 RVs. Such RVZPs are estimated for 3.6 million RVs and can reach a mean precision of $\sim 0.38\,\mathrm{km\,s}^{-1}$. The result of the temporal variation of RVZPs indicates that our algorithm is efficient and necessary before we use the absolute RVs to perform time-domain analysis. Validating the results with APOGEE DR16 shows that our absolute RVs can reach an overall precision of 0.84/0.80 $\mathrm{km\,s}^{-1}$ in the blue/red arm at $50<\mathrm{SNR}<100$, while 1.26/1.99 $\mathrm{km\,s}^{-1}$ at $5<\mathrm{SNR}<10$. The cumulative distribution function (CDF) of the standard deviations of multiple RVs ($N_\mathrm{obs}\geq 8$) for 678 standard stars reach 0.45/0.54, 1.07/1.39, and 1.45/1.86 $\mathrm{km\,s}^{-1}$ in the blue/red arm at 50\%, 90\%, and 95\% levels, respectively. The catalogs of the RVs, RVZPs, and selected candidate RV standard stars are available at \url{https://github.com/hypergravity/paperdata}.
分类: 天文学 >> 天文学 提交时间: 2023-02-19
摘要:Transit Timing Variation (TTV) of hot Jupiters provides direct observational evidence of planet tidal dissipation. Detecting tidal dissipation through TTV needs high precision transit timings and long timing baselines. In this work, we predict and discuss the potential scientific contribution of SiTian Survey in detecting and analyzing exoplanet TTV. We develop a tidal dissipation detection pipeline for SiTian Survey that aims at time-domain astronomy with 72 1-meter optical telescopes. The pipeline includes the modules of light curve deblending, transit timing obtaining, and TTV modeling. SiTian is capable to detect more than 25,000 exoplanets among which we expect $\sim$50 sources showing evidence of tidal dissipation. We present detection and analysis of tidal dissipating targets, based on simulated SiTian light curves of XO-3b and WASP-161b. The transit light curve modeling gives consistent results within 1$\sigma$ to input values of simulated light curves. Also, the parameter uncertainties predicted by Monte-Carlo Markov Chain are consistent with the distribution obtained from simulating and modeling the light curve 1000 times. The timing precision of SiTian observations is $\sim$ 0.5 minutes with one transit visit. We show that differences between TTV origins, e.g., tidal dissipation, apsidal precession, multiple planets, would be significant, considering the timing precision and baseline. The detection rate of tidal dissipating hot Jupiters would answer a crucial question of whether the planet migrates at an early formation stage or random stages due to perturbations, e.g., planet scattering, secular interaction. SiTian identified targets would be constructive given that the sample would extend tenfold.