• The Effect of Thermal Pressure on Collisionless Magnetic Reconnection Rate

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Modeling collisionless magnetic reconnection rate is an outstanding challenge in basic plasma physics research. While the seemingly universal rate of an order $\mathcal{O}(0.1)$ is often reported in the low-$\beta$ regime, it is not clear how reconnection rate scales with a higher plasma $\beta$. Due to the complexity of the pressure tensor, the available reconnection rate model is limited to the low plasma-$\beta$ regime, where the thermal pressure is arguably negligible. However, the thermal pressure effect becomes important when $\beta \gtrsim \mathcal{O}(1)$. Using first-principle kinetic simulations, we show that both the reconnection rate and outflow speed drop as $\beta$ gets larger. A simple analytical framework is derived to take account of the self-generated pressure anisotropy and pressure gradient in the force-balance around the diffusion region, explaining the varying trend of key quantities and reconnection rates in these simulations with different $\beta$. The predicted scaling of the normalized reconnection rate is $\simeq \mathcal{O}(0.1/\sqrt{\beta_{i0}})$ in the high $\beta$ limit, where $\beta_{i0}$ is the ion $\beta$ of the inflow plasma.

  • The Acceleration of Charged Particles and Formation of Power-law Energy Spectra in Nonrelativistic Magnetic Reconnection

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic reconnection is a primary driver of particle acceleration processes in space and astrophysical plasmas. Understanding how particles are accelerated and the resulting particle energy spectra is among the central topics in reconnection studies. We review recent advances in addressing this problem in nonrelativistic reconnection that is relevant to space and solar plasmas and beyond. We focus on particle acceleration mechanisms, particle transport due to 3D reconnection physics, and their roles in forming power-law particle energy spectra. We conclude by pointing out the challenges in studying particle acceleration and transport in a large-scale reconnection layer and the relevant issues to be addressed in the future.

  • Fast Magnetic Reconnection induced by Resistivity Gradients in 2D Magnetohydrodynamics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using 2-dimensional (2D) magnetohydrodynamics (MHD) simulations, we show that Petschek-type magnetic reconnection can be induced using a simple resistivity gradient in the reconnection outflow direction, revealing the key ingredient of steady fast reconnection in the collisional limit. We find that the diffusion region self-adjusts its half-length to fit the given gradient scale of resistivity. The induced reconnection x-line and flow stagnation point always reside within the resistivity transition region closer to the higher resistivity end. The opening of one exhaust by this resistivity gradient will lead to the opening of the other exhaust located on the other side of the x-line, within the region of uniform resistivity. Potential applications of this setup to reconnection-based thrusters and solar spicules are discussed. In a separate set of numerical experiments, we explore the maximum plausible reconnection rate using a large and spatially localized resistivity right at the x-line. Interestingly, the resulting current density at the x-line drops significantly so that the normalized reconnection rate remains bounded by the value $\simeq 0.2$, consistent with the theoretical prediction.

  • Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10 Solar Flare

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The X8.2-class limb flare on September 10, 2017 is among the best studied solar flare events owing to its great similarity to the standard flare model and the broad coverage by multiple spacecraft and ground-based observations. These multiwavelength observations indicate that electron acceleration and transport are efficient in the reconnection and flare looptop regions. However, there lacks a comprehensive model for explaining and interpreting the multi-faceted observations. In this work, we model the electron acceleration and transport in the early impulsive phase of this flare. We solve the Parker transport equation that includes the primary acceleration mechanism during magnetic reconnection in the large-scale flare region modeled by MHD simulations. We find that electrons are accelerated up to several MeV and fill a large volume of the reconnection region, similar to the observations shown in microwaves. The electron spatial distribution and spectral shape in the looptop region agree well with those derived from the microwave and hard X-ray emissions before magnetic islands grow large and dominate the acceleration. Future emission modelings using the electron maps will enable direct comparison with microwave and hard X-ray observations. These results shed new light on the electron acceleration and transport in a broad region of solar flares within a data-constrained realistic flare geometry.

  • First-Principles Theory of the Rate of Magnetic Reconnection in Magnetospheric and Solar Plasmas

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The rate of magnetic reconnection is of the utmost importance in a variety of processes because it controls, for example, the rate energy is released in solar flares, the speed of the Dungey convection cycle in Earth's magnetosphere, and the energy release rate in harmful geomagnetic substorms. It is known from numerical simulations and satellite observations that the rate is approximately 0.1 in normalized units, but despite years of effort, a full theoretical prediction has not been obtained. Here, we present a first-principles theory for the reconnection rate in non-relativistic electron-ion collisionless plasmas, and show that the same prediction explains why Sweet-Parker reconnection is considerably slower. The key consideration of this analysis is the pressure at the reconnection site (i.e., the x-line). We show that the Hall electromagnetic fields in antiparallel reconnection cause an energy void, equivalently a pressure depletion, at the x-line, so the reconnection exhaust opens out, enabling the fast rate of 0.1. If the energy can reach the x-line to replenish the pressure, the exhaust does not open out. In addition to heliospheric applications, these results are expected to impact reconnection studies in planetary magnetospheres, magnetically confined fusion devices, and astrophysical plasmas.

  • A model of double coronal hard X-ray sources in solar flares

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how are these X-ray-emitting electrons accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bi-directional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to $>$100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares.

  • Magnetic Energy Release, Plasma Dynamics, and Particle Acceleration during Relativistic Turbulent Magnetic Reconnection

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In strongly magnetized astrophysical plasma systems, magnetic reconnection is believed to be a primary process during which explosive energy release and particle acceleration occur, leading to significant high-energy emission. Past years have witnessed active development of kinetic modeling of relativistic magnetic reconnection, supporting this magnetically dominated scenario. A much less explored issue is the consequence of 3D dynamics, where turbulent structures are naturally generated as various types of instabilities develop. This paper presents a series of 3D, fully-kinetic simulations of relativistic turbulent magnetic reconnection (RTMR) in positron-electron plasmas with system domains much larger than kinetic scales. Our simulations start from a force-free current sheet with several different modes of long wavelength magnetic field perturbations, which drive additional turbulence in the reconnection region. Because of this, the current layer breaks up and the reconnection region quickly evolves into a turbulent layer filled with coherent structures such as flux ropes and current sheets. We find that plasma dynamics in RTMR is vastly different from their 2D counterparts in many aspects. The flux ropes evolve rapidly after their generation, and can be completely disrupted due to the secondary kink instability. This turbulent evolution leads to superdiffusion behavior of magnetic field lines as seen in MHD studies of turbulent reconnection. Meanwhile, nonthermal particle acceleration and energy-release time scale can be very fast and do not strongly depend on the turbulence amplitude. The main acceleration mechanism is a Fermi-like acceleration process supported by the motional electric field, whereas the non-ideal electric field acceleration plays a subdominant role. We discuss possible observational implications of 3D RTMR in high-energy astrophysics.

  • Numerical Modeling of Energetic Electron Acceleration, Transport, and Emission in Solar Flares: Connecting Loop-top and Footpoint Hard X-Ray Sources

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The acceleration and transport of energetic electrons during solar flares is one of the outstanding topics in solar physics. Recent X-ray and radio imaging and spectroscopy observations have provided diagnostics of the distribution of nonthermal electrons and suggested that, in certain flare events, electrons are primarily accelerated in the loop-top and likely experience trapping and/or scattering effects. By combining the focused particle transport equation with magnetohydrodynamic (MHD) simulations of solar flares, we present a macroscopic particle model that naturally incorporates electron acceleration and transport. Our simulation results indicate that the physical processes such as turbulent pitch-angle scattering can have important impacts on both electron acceleration in the loop-top and transport in the flare loop, and their influences are highly energy dependent. A spatial-dependent turbulent scattering with enhancement in the loop-top can enable both efficient electron acceleration to high energies and transport of abundant electrons to the footpoints. We further generate spatially resolved synthetic hard X-ray (HXR) emission images and spectra, revealing both the loop-top and footpoint HXR sources. Similar to the observations, we show that the footpoint HXR sources are brighter and harder than the loop-top HXR source. We suggest that the macroscopic particle model provides new insights into understanding the connection between the observed loop-top and footpoint nonthermal emission sources by combining the particle model with dynamically evolving MHD simulations of solar flares.

  • Numerical Modeling of Energetic Electron Acceleration, Transport, and Emission in Solar Flares: Connecting Loop-top and Footpoint Hard X-Ray Sources

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The acceleration and transport of energetic electrons during solar flares is one of the outstanding topics in solar physics. Recent X-ray and radio imaging and spectroscopy observations have provided diagnostics of the distribution of nonthermal electrons and suggested that, in certain flare events, electrons are primarily accelerated in the loop-top and likely experience trapping and/or scattering effects. By combining the focused particle transport equation with magnetohydrodynamic (MHD) simulations of solar flares, we present a macroscopic particle model that naturally incorporates electron acceleration and transport. Our simulation results indicate that the physical processes such as turbulent pitch-angle scattering can have important impacts on both electron acceleration in the loop-top and transport in the flare loop, and their influences are highly energy dependent. A spatial-dependent turbulent scattering with enhancement in the loop-top can enable both efficient electron acceleration to high energies and transport of abundant electrons to the footpoints. We further generate spatially resolved synthetic hard X-ray (HXR) emission images and spectra, revealing both the loop-top and footpoint HXR sources. Similar to the observations, we show that the footpoint HXR sources are brighter and harder than the loop-top HXR source. We suggest that the macroscopic particle model provides new insights into understanding the connection between the observed loop-top and footpoint nonthermal emission sources by combining the particle model with dynamically evolving MHD simulations of solar flares.

  • Variable Ion Compositions of Solar Energetic Particle Events in the Inner Heliosphere: A Field-line Braiding Model with Compound Injections

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose a model for interpreting highly variable ion composition ratios in solar energetic particles (SEP) events recently observed by Parker Solar Probe (PSP) at $0.3 - 0.45$ astronomical unit. We use numerical simulations to calculate SEP propagation in a turbulent interplanetary magnetic field with a Kolmogorov power spectrum from large scale down to the gyration scale of energetic particles. We show that when the source regions of different species are offset by a distance comparable to the size of the source regions, the observed energetic particle composition He/H can be strongly variable over more than two orders of magnitude, even if the source ratio is at the nominal value. Assuming a $^3$He/$^4$He source ratio of $10 \%$ in impulsive $^3$He-rich events and the same spatial offset of the source regions, the $^3$He/$^4$He ratio at observation sites also vary considerably. The variability of the ion composition ratios depends on the radial distance, which can be tested by observations made at different radial locations. We discuss the implication of these results on the variability of ion composition of impulsive events and on further PSP and Solar Orbiter observations close to the Sun.

  • Advancing Theory and Modeling Efforts in Heliophysics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Heliophysics theory and modeling build understanding from fundamental principles to motivate, interpret, and predict observations. Together with observational analysis, they constitute a comprehensive scientific program in heliophysics. As observations and data analysis become increasingly detailed, it is critical that theory and modeling develop more quantitative predictions and iterate with observations. Advanced theory and modeling can inspire and greatly improve the design of new instruments and increase their chance of success. In addition, in order to build physics-based space weather forecast models, it is important to keep developing and testing new theories, and maintaining constant communications with theory and modeling. Maintaining a sustainable effort in theory and modeling is critically important to heliophysics. We recommend that all funding agencies join forces and consider expanding current and creating new theory and modeling programs--especially, 1. NASA should restore the HTMS program to its original support level to meet the critical needs of heliophysics science; 2. a Strategic Research Model program needs to be created to support model development for next-generation basic research codes; 3. new programs must be created for addressing mission-critical theory and modeling needs; and 4. enhanced programs are urgently required for training the next generation of theorists and modelers.

  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.

  • Quantifying Energy Release in Solar Flares and Solar Eruptive Events: New Frontiers with a Next-Generation Solar Radio Facility

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar flares and the often associated solar eruptive events serve as an outstanding laboratory to study the magnetic reconnection and the associated energy release and conversion processes under plasma conditions difficult to reproduce in the laboratory, and with considerable spatiotemporal details not possible elsewhere in the universe. In the past decade, thanks to advances in multi-wavelength imaging spectroscopy, as well as developments in theories and numerical modeling, significant progress has been made in improving our understanding of solar flare/eruption energy release. In particular, broadband imaging spectroscopy at microwave wavelengths offered by the Expanded Owens Valley Solar Array (EOVSA) has enabled the revolutionary capability of measuring the time-evolving coronal magnetic fields at or near the flare reconnection region. However, owing to EOVSA's limited dynamic range, imaging fidelity, and angular resolution, such measurements can only be done in a region around the brightest source(s) where the signal-to-noise is sufficiently large. In this white paper, after a brief introduction to the outstanding questions and challenges pertinent to magnetic energy release in solar flares and eruptions, we will demonstrate how a next-generation radio facility with many (~100-200) antenna elements can bring the next revolution by enabling high dynamic range, high fidelity broadband imaging spectropolarimetry along with a sub-second time resolution and arcsecond-level angular resolution. We recommend to prioritize the implementation of such a ground-based instrument within this decade. We also call for facilitating multi-wavelength, multi-messenger observations and advanced numerical modeling in order to achieve a comprehensive understanding of the "system science" of solar flares and eruptions.