• A new post-hoc flat field measurement method for the Solar X-ray and Extreme Ultraviolet Imager onboard the Fengyun-3E satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The extreme ultraviolet (EUV) observations are widely used in solar activity research and space weather forecasting since they can observe both the solar eruptions and the source regions of the solar wind. Flat field processing is indispensable to remove the instrumental non-uniformity of a solar EUV imager in producing high-quality scientific data from original observed data. Fengyun-3E (FY-3E) is a meteorological satellite operated in Sun-synchronous orbit, and the routine EUV imaging data from the Solar X-ray and Extreme Ultraviolet Imager (X-EUVI) onboard FY-3E has the characteristics of concentric rotation. Taking advantage of the concentric rotation, we propose a post-hoc flat field measurement method for its EUV 195 channel in this paper. This method removes small-scale and time-varying component of the coronal activities by taking the median value for each pixel along the time axis of a concentric rotation data cube, and then derives large-scale and invariable component of the quiet coronal radiation, and finally generates a flat field image. Analysis shows that our method is able to measure the instrumental spot-like non-uniformity possibly caused by contamination on the detector, which mostly disappears after the in-orbit self-cleaning process. It can also measure the quasi-periodic grid-like non-uniformity, possibly from the obscuration of the support mesh on the rear filter. After flat field correction, these instrumental non-uniformities from the original data are effectively removed. X-EUVI 195 data after dark and flat field corrections are consistent with the 193 channel data from SDO/AIA, verifying the suitability of the method. Our method is not only suitable for FY-3E/X-EUVI but also a candidate method for the flat field measurement of future solar EUV telescopes.