• The Dark Energy Survey Year 3 high redshift sample: Selection, characterization and analysis of galaxy clustering

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The fiducial cosmological analyses of imaging galaxy surveys like the Dark Energy Survey (DES) typically probe the Universe at redshifts $z < 1$. This is mainly because of the limited depth of these surveys, and also because such analyses rely heavily on galaxy lensing, which is more efficient at low redshifts. In this work we present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around $z \sim 0.9$, $1.2$ and $1.5$, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal-to-noise $S/N \sim 70$ after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe $\Omega_m$ and the Hubble parameter $h$, $\Omega_m h = 0.195^{+0.023}_{-0.018}$, and 2-3% measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, $b \sigma_8$. A companion paper $\textit{(in preparation)}$ will present the cross-correlations of these high-$z$ samples with CMB lensing from Planck and SPT, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.

  • Dark Energy Survey Year 3 Results: Constraints on cosmological parameters and galaxy bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We constrain cosmological and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-3 data. We describe our modeling framework, and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we obtain constraints on the matter density to be $\Omega_{\rm m} = 0.325^{+0.033}_{-0.034}$. We also implement a non-linear galaxy bias model to probe smaller scales that includes parameterization based on hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We perform robustness tests of our methodology pipeline and demonstrate the stability of the constraints to changes in the theoretical model. Using the redMaGiC galaxy sample as foreground lens galaxies, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to de-correlation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the $S_8$ parameter. We find that a scale-, redshift- and sky-area-independent phenomenological de-correlation parameter can effectively capture the impact of this systematic error. We trace the source of this de-correlation to a color-dependent photometric issue and minimize its impact on our result by changing the selection criteria of redMaGiC galaxies. Using this new sample, our constraints on the $S_8$ parameter are consistent with previous studies, and we find a small shift in the $\Omega_{\rm m}$ constraints compared to the fiducial redMaGiC sample. We constrain the mean host halo mass of the redMaGiC galaxies in this new sample to be approximately $1.6 \times 10^{13} M_{\odot}/h$.