注册 登录
返回旧版
EN 中文
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. chinaXiv:202212.00065
    下载全文

    HS-ES-DE: HS-ES Followed by L-SHADE-EpSin for Real Parameter Single Objective Optimization

    分类: 计算机科学 >> 计算机软件 提交时间: 2022-12-07

    Jianjun Jiang Yong Wan Chengjun Li Chuchuan Cen Yikai Shao Qinxue Meng

    摘要:

    For real parameter single objective optimization, Differential Evolution (DE) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) both perform powerfully. Nevertheless, in the field of real parameter single objective optimization, it is impossible for a given algorithm to perform well in all fitness landscapes. Practice has proved that ensemble of different algorithms may lead to improvement in solution. In this paper, based on two famous population-based metaheuristics - LSHADE-EpSin and HS-ES, we propose ensemble with successively executed constituent algorithms - HS-ES-DE. In our algorithm, HS-ES is replaced by L-SHADE-EpSin after stagnation is detected. Beside our HS-ES-DE, 12 population-based metaheuristics are involved in our experiments in which three benchmark test suites are employed. Experimental results show that our algorithm is very competitive.

    同行评议状态:待评议

    点击量 1772 下载量 97 评论 0
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心