按提交时间
按主题分类
按作者
按机构
  • Magnetically Driven Relativistic Jet in the High-Redshift Blazar OH~471

    分类: 天文学 >> 天体物理学 提交时间: 2024-05-20

    摘要: Context : Understanding the mechanisms that launch and shape powerful relativistic jets from supermassive black holes (SMBHs) in high-redshift active galactic nuclei (AGN) is crucial for probing the co-evolution of SMBHs and galaxies over cosmic time. Aims :We study the high-redshift ($z=3.396$) blazar OH~471 to explore the jet launching mechanism in the early Universe. Methods : Using multi-frequency radio monitoring observations and high-resolution Very Long Baseline Interferometry imaging over three decades, we study the milliarcsecond structure and long-term variability of OH~471. Results : Spectral modelling of the radio flux densities reveals a synchrotron self-absorbed spectrum indicating strong magnetic fields within the compact core. By applying the flux freezing approximation, we estimate the magnetic flux carried by the jet and find that it reaches or exceeds theoretical predictions for jets powered by black hole spin energy via the Blandford-Znajek mechanism. This implies that OH~471 was in a magnetically arrested disk (MAD) state where the magnetic flux accumulated near the horizon regulates the accretion flow, allowing efficient extraction of black hole rotational energy. Conclusions : Our study demonstrates the dominance of MAD accretion in powering the prominent radio flares and relativistic jets observed in the radio-loud AGN OH~471 and statistical studies of large samples of high-redshift AGN will shed light on the role of MAD accretion in launching and accelerating the earliest relativistic jets.

  • Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel'dovich Effect II: Modeling and constraints on halo pressure profiles

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. 2021), we present tomographic measurements and validation tests of the cross-correlation between galaxy shear measurements from the first three years of observations of the Dark Energy Survey, and tSZ measurements from a combination of Atacama Cosmology Telescope and ${\it Planck}$ observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low mass halos, consistent with predictions for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass bias ($B \equiv M_{500c}/M_{\rm SZ}$) from our measurements, finding $B = 1.8\pm0.1$ when adopting the ${\it Planck}$-preferred cosmological parameters. We additionally find that our measurements are consistent with a non-zero redshift evolution of $B$, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the ${\it Planck}$-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels.