Current Location:home > Browse

1. chinaXiv:201912.00009 [pdf]

Effects of temperature and light on seed germination of ephemeral plants in the Gurbantunggut Desert, China: implications for vegetation restoration

CHEN Yanfeng; CAO Qiumei; LI Dexin; LIU Huiliang; ZHANG Daoyuan
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Seed germination is a key transitional stage in plant life cycle and is strongly regulated by temperature and light. Therefore, research on the effects of temperature and light on seed germination is extremely meaningful for vegetation restoration, especially in desert ecosystems. Seeds of 28 ephemeral plants collected from the Gurbantunggut Desert of China were incubated at different temperatures (5°C/1°C, 15°C/5°C, 20°C/5°C, 25°C/10°C and 30°C/15°C) in 12-h light/12-h darkness or continuous darkness regimes, and the responses of seed germination to temperature and light and the germination speed were studied in 2016. Results showed that seed germination percentage of the 28 ephemeral plants significantly differed to temperature and light. We classified the studied plants as the following groups based on their responses to temperature: 1 low temperature responsed plants, 12 moderate temperature responsed plants, 7 high temperature responsed plants, 4 non-responsed plants and 5 plants of no germination. It should be noted that Corispermum lehmannianum Bunge is sensitive to both moderate and high temperatures. There were 4 groups of plant in response to light, i.e., 7 light responsed plants, 10 dark responsed plants, 6 light non-responsed plants and 5 plants of no germination. Based on seed germination speed of the 28 ephemeral plants, we divided them into 4 patterns of germination, i.e., very rapid, moderately rapid, moderate and slow. Combining variations of temperature, precipitation and sand dune types in the study area, we suggested that very rapid and moderately rapid germinated plants could be used to moving sand dunes in early spring during vegetation restoration, moderate germinated plants could be used to semi-fixed sand dunes in late autumn, and slow germinated plants could be used to sand plain in summer. Thus, seedling establishment and vegetation restoration would be improved by considering seed germination characteristics of these ephemeral plants in the Gurbantunggut Desert, China.

submitted time 2019-12-06 Cooperative journals:《Journal of Arid Land》 Hits4086Downloads1013 Comment 0

2. chinaXiv:201804.02359 [pdf]

Effect of water deficiency on relationships between metabolism, physiology, biomass, and yield of upland cotton (Gossypium hirsutum L.)

BOZOROV, Tohir A ; USMANOV, Rustam M ; YANG, Honglan; HAMDULLAEV, Shukhrat A ; MUSAYEV, Sardorbek ; SHAVKIEV, Jaloliddin ; NABIEV, Saidgani ; ZHANG, Daoyuan; ABDULLAEV, Alisher A
Subjects: Physics >> General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.

Drought is a common abiotic stress that considerably limits crop production. The objective of this study is to explore the influence of water deficiency on the yield, physiologic and metabolomic attributes in upland cotton cultivars (Gossypium hirsutum L). Cotton cultivars, 'Ishonch' and 'Tashkent-6' were selected to study the relationships among their physiologic, metabolomic and yield attributes during water deficiency. Deficit irrigation was designed by modifying the traditional watering protocol to reduce water use. Results indicate that cotton cultivars respond differently to water deficit stress. Water deficit significantly influenced plant height, the number of internodes, and sympodial branches in both cultivars. However, yield components such as the number of bolls, boll seed, lint mass, and individual plant yield were significantly reduced only in 'Tashkent-6'. The leaf area decreased and the specific leaf weight increased in 'Ishonch' under deficit irrigation conditions. However, 'Tashkent-6' demonstrated significant water loss compared to 'Ishonch', and both cultivars showed reduced transpiration rates. Untargeted metabolite profiles of leaves showed clear separation in 'Ishonch', but not in 'Tashkent-6' under deficit irrigation compared to full irrigation. The individual metabolites such as proline and galactinol showed strong association with yield under water deficit stress. Moreover, this study indicates that leaf area and transpiration intensity influence yield during water deficiency. In summary, the correlation among morpho-physiologic, metabolic, and yield components significantly varied between the two cultivars under water deficiency. The flowering stage was sensitive to water stress for both cultivars. The direct relationship between physiology, metabolism, and yield may be a useful selection criterion for determining candidate parents for cotton drought tolerance breeding.

submitted time 2018-04-24 Cooperative journals:《Journal of Arid Land》 Hits2602Downloads1201 Comment 0

3. chinaXiv:201803.00012 [pdf]

Desiccation tolerance in bryophytes: the rehydration proteomes of Bryum argenteum provide insights into the resuscitation mechanism

GAO, Bei; ZHANG, Daoyuan; LI, Xiaoshuang; YANG, Honglan; LIANG, Yuqing; CHEN, Moxian; ZHANG, Yuanming; ZHANG, Jianhua; WOOD, Andrew
Subjects: Physics >> General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.

Bryum argenteum Hedw. is a desiccation tolerant bryophyte and belongs to one of the most important components of the biological soil crusts (BSCs) found in the deserts of Central Asia. Limited information is available on rehydration-responsive proteins in desiccation tolerant plants. As a complement to our previous research analyzing the rehydration transcriptome, we present a parallel quantitative proteomic effort to study rehydration-responsive proteins. Bryophyte gametophores were desiccated (Dry) and rehydrated for 2 h (R2) and 24 h (R24). Proteins from Dry, R2 and R24 gametophores were labeled by isobaric tags for relative and absolute quantitation (iTRAQ) to determine the relative abundance of rehydration-responsive proteins. A total of 5503 non-redundant protein sequences were identified and 4772 (86.7%) protein sequences were annotated using Gene Ontology (GO) terms and Pfam classifications. Upon rehydration 239 proteins were elevated and 461 proteins were reduced as compared to the desiccated protein sample. Differentially up-regulated proteins were classified into a number of categories including reactive oxygen species scavenging enzymes, detoxifying enzymes, Late Embryogenesis Abundant (LEA) proteins, heat shock proteins, proteasome components and proteases, and photosynthesis and translation related proteins. Furthermore, the results of the correlation between transcriptome and proteome revealed the discordant changes in the expression between protein and mRNA.

submitted time 2018-03-02 Cooperative journals:《Journal of Arid Land》 Hits2118Downloads1089 Comment 0

  [1 Pages/ 3 Totals]