• Disruption of Hierarchical Clustering in the Vela OB2 Complex and the Cluster Pair Collinder 135 and UBC7 with Gaia EDR3: Evidence of Supernova Quenching

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We identify hierarchical structures in the Vela OB2 complex and the cluster pair Collinder 135 and UBC 7 with Gaia EDR3 using the neural network machine learning algorithm StarGO. Five second-level substructures are disentangled in Vela OB2, which are referred to as Huluwa 1 (Gamma Velorum), Huluwa 2, Huluwa 3, Huluwa 4 and Huluwa 5. For the first time, Collinder 135 and UBC 7 are simultaneously identified as constituent clusters of the pair with minimal manual intervention. We propose an alternative scenario in which Huluwa 1-5 have originated from sequential star formation. The older clusters Huluwa 1-3 with an age of 10-22 Myr, generated stellar feedback to cause turbulence that fostered the formation of the younger-generation Huluwa 4-5 (7-20 Myr). A supernova explosion located inside the Vela IRAS shell quenched star formation in Huluwa 4-5 and rapidly expelled the remaining gas from the clusters. This resulted in global mass stratification across the shell, which is confirmed by the regression discontinuity method. The stellar mass in the lower rim of the shell is $0.32\pm0.14$ $\rm M_\odot$ higher than in the upper rim. Local, cluster-scale mass segregation is observed in the lowest-mass cluster Huluwa 5. Huluwa 1-5 (in Vela OB2) are experiencing significant expansion, while the cluster pair suffers from moderate expansion. The velocity dispersions suggest that all five groups (including Huluwa 1A and Huluwa 1B) in Vela OB2 and the cluster pair are supervirial and are undergoing disruption, and also that Huluwa 1A and Huluwa 1B may be a coeval young cluster pair. N-body simulations predict that Huluwa 1-5 in Vela OB2 and the cluster pair will continue to expand in the future 100 Myr and eventually dissolve.

  • 3D Morphology of Open Clusters in the Solar Neighborhood with Gaia EDR3 II: Hierarchical Star Formation Revealed by Spatial and Kinematic Substructures

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We identify members of 65 open clusters in the solar neighborhood using the machine-learning algorithm StarGO based on Gaia EDR3 data. After adding members of twenty clusters from previous studies (Pang et al. 2021a,b; Li et al. 2021) we obtain 85 clusters, and study their morphology and kinematics. We classify the substructures outside the tidal radius into four categories: filamentary (f1) and fractal (f2) for clusters $100$ Myr. The kinematical substructures of f1-type clusters are elongated; these resemble the disrupted cluster Group X. Kinematic tails are distinct in t-type clusters, especially Pleiades. We identify 29 hierarchical groups in four young regions (Alessi 20, IC 348, LP 2373, LP 2442); ten among these are new. The hierarchical groups form filament networks. Two regions (Alessi 20, LP 2373) exhibit global "orthogonal" expansion (stellar motion perpendicular to the filament), which might cause complete dispersal. Infalling-like flows (stellar motion along the filament) are found in UBC 31 and related hierarchical groups in the IC 348 region. Stellar groups in the LP 2442 region (LP 2442 gp 1-5) are spatially well-mixed but kinematically coherent. A merging process might be ongoing in the LP 2442 subgroups. For younger systems ($\lesssim30$ Myr), the mean axis ratio, cluster mass and half-mass radius tend to increase with age values. These correlations between structural parameters may imply two dynamical processes occurring in the hierarchical formation scenario in young stellar groups: (1) filament dissolution and (2) sub-group mergers.