• Automatic processing of facial width-to-height ratio

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-10-09 Cooperative journals: 《心理学报》

    Abstract: The facial width-to-height ratio (fWHR) is a stable perceptual structure of all faces. It is calculated by dividing the face width (the distance between the left and right zygion) by the face height (the distance between the eyebrow and the upper lip). Previous studies have demonstrated that men's facial width-to-height ratio is a reliable clue to noticing aggressive tendencies and behavior. Individuals with higher fWHR were considered by observers as more aggressive than those with lower fWHR. The researchers proposed that this may be related to facial expression. Observers more readily saw anger in faces with a relatively high fWHR and more readily saw fear in faces with a relatively low fWHR. However, it is unclear what the neural mechanism of fWHR is, particularly in the absence of attention. The present study investigated this issue by recording visual mismatch negativity (vMMN), which indicates automatic processing of visual information under unattended conditions. Participants performed a size-change-detection task on a central cross, while random sequences of faces were presented in the background using a deviant-standard-reverse oddball paradigm. High fWHR faces (deviant stimuli) were presented less frequently among low fWHR faces (standard stimuli), or vice versa. Forty-one and twenty-five Chinese participated in Experiment 1 and 2, respectively. We hypothesized that faces with high fWHR would elicit a larger vMMN compared to faces with low fWHR. If the above result is related to the fact that high fWHR faces appear angrier and low fWHR faces appear more fearful, then high fWHR faces displaying an angry expression would evoke vMMN and low fWHR faces displaying a fearful expression would evoke vMMN. In Experiment 1, faces with neutral expressions were used. The occipital-temporal vMMN emerged in the latency range of 200~500 ms for faces with high fWHR and in the latency range of 200~250 ms and 300~350 ms for faces with low fWHR. More importantly, faces with high fWHR elicited a higher vMMN than those with low fWHR faces in the 300~350 ms latency range. In Experiment 2, faces with expressions of fear and anger were used. Results showed that high-fWHR faces displaying an angry expression elicited a vMMN in the 200~250 ms and 300~400 ms latency ranges, while low-fWHR faces displaying a fearful expression elicited a vMMN in the 250~400 ms latency range, especially in the left hemisphere. Comparing Experiment 1 and 2, we found that faces with high fWHR displaying an angry expression elicited smaller vMMN than those displaying a neutral expression. In conclusion, the present findings suggest that the facial width-to-height ratio is associated with automatic processing and provide new electrophysiological evidence for the different mechanisms underlying high and low fWHR faces under unattended conditions. The results might be related to facial expressions. Consistent with previous studies, the current finding demonstrates that automatic processing of high and low fWHR is promoted by expressions of anger and fear, respectively. At the same time, due to the automatic processing of facial expressions, the automatic processing of faces with high fWHR was weakened by angry faces relative to neutral faces.

  • Automatic processing of facial width-to-height ratio

    Subjects: Psychology >> Experimental Psychology submitted time 2023-06-25

    Abstract: The facial width-to-height ratio (fWHR) is a stable perceptual structure of all faces. It is calculated by dividing the face width (the distance between the left and right zygion) by the face height (the distance between the eyebrow and the upper lip). Previous studies have demonstrated that men's facial width-to-height ratio is a reliable clue to noticing aggressive tendencies and behavior. Individuals with higher fWHR were considered by observers as more aggressive than those with lower fWHR. The researchers proposed that this may be related to facial expression. Observers more readily saw anger in faces with a relatively high fWHR and more readily saw fear in faces with a relatively low fWHR. However, it is unclear what the neural mechanism of fWHR is, particularly in the absence of attention. The present study investigated this issue by recording visual mismatch negativity (vMMN), which indicates automatic processing of visual information under unattended conditions.
    Participants performed a size-change-detection task on a central cross, while random sequences of faces were presented in the background using a deviant-standard-reverse oddball paradigm. High fWHR faces (deviant stimuli) were presented less frequently among low fWHR faces (standard stimuli), or vice versa. Forty-one and twenty-five Chinese participated in Experiment 1 and 2, respectively. We hypothesized that faces with high fWHR would elicit a larger vMMN compared to faces with low fWHR. If the above result is related to the fact that high fWHR faces appear angrier and low fWHR faces appear more fearful, then high fWHR faces displaying an angry expression would evoke vMMN and low fWHR faces displaying a fearful expression would evoke vMMN.
    In Experiment 1, faces with neutral expressions were used. The occipital-temporal vMMN emerged in the latency range of 200~500 ms for faces with high fWHR and in the latency range of 200~250 ms and 300~350 ms for faces with low fWHR. More importantly, faces with high fWHR elicited a higher vMMN than those with low fWHR faces in the 300~350 ms latency range. In Experiment 2, faces with expressions of fear and anger were used. Results showed that high-fWHR faces displaying an angry expression elicited a vMMN in the 200~250ms and 300~400ms latency ranges, while low-fWHR faces displaying a fearful expression elicited a vMMN in the 250~400ms latency range, especially in the left hemisphere. Comparing Experiment 1 and 2, we found that faces with high fWHR displaying an angry expression elicited smaller vMMN than those displaying a neutral expression.
    In conclusion, the present findings suggest that the facial width-to-height ratio is associated with automatic processing and provide new electrophysiological evidence for the different mechanisms underlying high and low fWHR faces under unattended conditions. The results might be related to facial expressions. Consistent with previous studies, the current finding demonstrates that automatic processing of high and low fWHR is promoted by expressions of anger and fear, respectively. At the same time, due to the automatic processing of facial expressions, the automatic processing of faces with high fWHR was weakened by angry faces relative to neutral faces.