Current Location:home > Browse

1. chinaXiv:202203.00040 [pdf]

Economic losses from reduced freshwater under future climate scenarios: An example from the Urumqi River, Tianshan Mountains

ZHANG Xueting; CHEN Rensheng; LIU Guohua
Subjects: Geosciences >> Hydrology

As important freshwater resources in alpine basins, glaciers and snow cover tend to decline due to climate warming, thus affecting the amount of water available downstream and even regional economic development. However, impact assessments of the economic losses caused by reductions in freshwater supply are quite limited. This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios (RCP2.6 (RCP, Representative Concentration Pathway), RCP4.5, and RCP8.5) by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial, agricultural, service, and domestic water uses combined with the present value method for the 2030s, 2050s, 2070s, and 2090s. The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6% and 74.5% under the RCP4.5 and RCP8.5 scenarios by the 2090s relative to the baseline period (1980–2010), respectively. Compared to the RCP2.6 scenario, the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×106 and 537.20×106 CNY in the 2050s and 2090s, respectively, and the cumulative economic loss value for 2099 is approximately 2124.00×106 CNY. We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses, respectively. The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater. These findings highlight the need for climate mitigation actions, industrial transformation, and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.

submitted time 2022-03-15 Cooperative journals:《Journal of Arid Land》 Hits1674Downloads300 Comment 0

2. chinaXiv:202111.00044 [pdf]

Response of ecosystem service value to land use/cover change in the northern slope economic belt of the Tianshan Mountains, Xinjiang, China

SUN Chen; MA Yonggang; GONG Lu
Subjects: Geosciences >> Geography

Land use/cover change (LUCC) is becoming more and more frequent and extensive as a result of human activities, and is expected to have a major impact on human welfare by altering ecosystem service value (ESV). In this study, we utilized remote sensing images and statistical data to explore the spatial-temporal changes of land use/cover types and ESV in the northern slope economic belt of the Tianshan Mountains in Xinjiang Uygur Autonomous Region, China from 1975 to 2018. During the study period, LUCC in the study region varied significantly. Except grassland and unused land, all the other land use/cover types (cultivated land, forestland, waterbody, and construction land) increased in areas. From 1975 to 2018, the spatial-temporal variations in ESV were also pronounced. The total ESV decreased by 4.00×108 CNY, which was primarily due to the reductions in the areas of grassland and unused land. Waterbody had a much higher ESV than the other land use/cover types. Ultimately, understanding the impact of LUCC on ESV and the interactions among ESV of different land use/cover types will help improve existing land use policies and provide scientific basis for developing new conservation strategies for ecologically fragile areas.

submitted time 2021-11-11 Cooperative journals:《Journal of Arid Land》 Hits2420Downloads251 Comment 0

3. chinaXiv:202107.00025 [pdf]

Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds

JI Huiping; CHEN Yaning; FANG Gonghuan; LI Zhi; DUAN Weili; ZHANG Qifei
Subjects: Geosciences >> Geography

The accurate simulation and prediction of runoff in alpine glaciated watersheds is of increasing importance for the comprehensive management and utilization of water resources. In this study, long short-term memory (LSTM), a state-of-the-art artificial neural network algorithm, is applied to simulate the daily discharge of two data-sparse glaciated watersheds in the Tianshan Mountains in Central Asia. Two other classic machine learning methods, namely extreme gradient boosting (XGBoost) and support vector regression (SVR), along with a distributed hydrological model (Soil and Water Assessment Tool (SWAT) and an extended SWAT model (SWAT_Glacier) are also employed for comparison. This paper aims to provide an efficient and reliable method for simulating discharge in glaciated alpine regions that have insufficient observed meteorological data. The two typical basins in this study are the main tributaries (the Kumaric and Toxkan rivers) of the Aksu River in the south Tianshan Mountains, which are dominated by snow and glacier meltwater and precipitation. Our comparative analysis indicates that simulations from the LSTM shows the best agreement with the observations. The performance metrics Nash-Sutcliffe efficiency coefficient (NS) and correlation coefficient (R2) of LSTM are higher than 0.90 in both the training and testing periods in the Kumaric River Basin, and NS and R2 are also higher than 0.70 in the Toxkan River Basin. Compared to classic machine learning algorithms, LSTM shows significant advantages over most evaluating indices. XGBoost also has high NS value in the training period, but is prone to overfitting the discharge. Compared with the widely used hydrological models, LSTM has advantages in predicting accuracy, despite having fewer data inputs. Moreover, LSTM only requires meteorological data rather than physical characteristics of underlying data. As an extension of SWAT, the SWAT_Glacier model shows good adaptability in discharge simulation, outperforming the original SWAT model, but at the cost of increasing the complexity of the model. Compared with the oftentimes complex semi-distributed physical hydrological models, the LSTM method not only eliminates the tedious calibration process of hydrological parameters, but also significantly reduces the calculation time and costs. Overall, LSTM shows immense promise in dealing with scarce meteorological data in glaciated catchments.

submitted time 2021-07-23 Cooperative journals:《Journal of Arid Land》 Hits1064Downloads616 Comment 0

4. chinaXiv:202106.00015 [pdf]

Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal

Nirmal M DAHAL; XIONG Donghong; Nilhari NEUPANE; Belayneh YIGEZ; ZHANG Baojun; YUAN Yong; Saroj KOIRALA; LIU Lin; FANG Yiping
Subjects: Geosciences >> Geography

Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors, especially in developing countries. This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin (KRB) in Nepal, using the standardized precipitation evapotranspiration index (SPEI) over the period from 1987 to 2017. The Mann-Kendall test was used to explore the trends of the SPEI values. The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period. Spatially, the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales, especially in summer and winter. The mountain region also showed a significant increasing drought trend in winter. The drought characteristic analysis indicated that the maximum duration, intensity, and severity of drought events were observed in the KRB after 2000. The Terai region presented the highest drought frequency and intensity, while the hill region presented the longest maximum drought duration. Moreover, the spatial extent of drought showed a significant increasing trend in the hill region at the monthly (drought station proportion of 7.6%/10a in August), seasonal (drought station proportion of 7.2%/10a in summer), and annual (drought station proportion of 6.7%/10a) scales. The findings of this study can assist local governments, planners, and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.

submitted time 2021-06-04 Cooperative journals:《Journal of Arid Land》 Hits3205Downloads629 Comment 0

5. chinaXiv:202102.00065 [pdf]

Region-wide glacier area and mass budgets for the Shaksgam River Basin, Karakoram Mountains, during 2000–2016

WANG Panpan; LI Zhongqin; XU Chunhai; WANG Puyu
Subjects: Geosciences >> Geography

The Karakoram Mountains are well known for their widespread surge-type glaciers and slight glacier mass gains. On the one hand, glaciers are one of the sensitive indicators of climate change, their area and thickness will adjust with climate change. On the other hand, glaciers provide freshwater resources for agricultural irrigation and hydroelectric generation in the downstream areas of the Shaksgam River Basin (SRB) in western China. The shrinkage of glaciers caused by climate change can significantly affect the security and sustainable development of regional water resources. In this study, we analyzed the changes in glacier area from 2000 to 2016 in the SRB using Landsat TM (Thematic Mapper)/ETM+ (Enhanced Mapper Plus)/OLI (Operational Land Imager) images. It is shown that the SRB contained 472 glaciers, with an area of 1840.3 km2, in 2016. The glacier area decreased by 0.14%/a since 2000, and the shrinkage of glacier in the southeast, east and south directions were the most, while the northeast, north directions were the least. Debris-covered area accounted for 8.0% of the total glacier area. We estimated elevation and mass changes using the 1 arc-second SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model) (2000) and the resolution of 8 m HMA (High Mountain Asia) DEM (2016). An average thickness of 0.08 (±0.03) m/a, or a slight mass increase of 0.06 (±0.02) m w.e./a has been obtained since 2000. We found thinning was significantly lesser on the clean ice than the debris-covered ice. In addition, the elevation of glacier surface is spatially heterogeneous, showing that the accumulation of mass is dominant in high altitude regions, and the main mass loss is in low altitude regions, excluding the surge-type glacier. For surge-type glaciers, the mass may transfer from the reservoir to the receiving area rapidly when surges, then resulting in an advance of glacier terminus. The main surge mechanism is still unclear, it is worth noting that the surge did not increase the glacier mass in this study.

submitted time 2021-02-10 Cooperative journals:《Journal of Arid Land》 Hits1259Downloads697 Comment 0

6. chinaXiv:202010.00038 [pdf]

Glacier variations and their response to climate change in an arid inland river basin of Northwest China

ZHOU,Zuhao; HAN,Ning; LIU,Jiajia; YAN,Ziqi; XU,Chongyu; CAI,Jingya; SHANG,Yizi; ZHU,Jiasong
Subjects: Geosciences >> History of Geosciences

Glaciers are a critical freshwater resource of river recharge in arid areas around the world. In recent decades, glaciers have shown evidence of retreat due to climate change, and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention. Glacier variations result from climate change, so they can serve as an indicator of climate change. Considering the climatic differences in different elevation ranges, it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone. In this study, we selected a typical arid inland river basin (Sugan Lake Basin) in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change. The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper (TM), Enhanced TM+ (ETM+) and Operational Land Imager (OLI) images. We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin, and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l. by the linear regression method and correlation analysis. In addition, based on the linear regression relationship established between glacier area and air temperature in each elevation zone, we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100. The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of –1.61 km2/a (–0.5%/a), and the rising temperature is the decisive factor dominating glacial retreat; there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016. The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature. Due to the influence of climate and topographic conditions, the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones. The trend in glacier shrinkage will continue because air temperature will continue to increase in the future, and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area. Quantitative glacier research can more accurately reflect the response of glacier variations to climate change, and the regression relationship can be used to predict the areas of glaciers under future climate scenarios. These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world.

submitted time 2020-10-20 Cooperative journals:《Journal of Arid Land》 Hits1027Downloads617 Comment 0

7. chinaXiv:201910.00051 [pdf]

Modified non-rectangular hyperbola equation with plant height for photosynthetic light-response curves of Potentilla anserina and Elymus nutans at various growth phases in the Heihe River Basin, Northwest China

LIU Junjie1; WANG Xiaoping; RONG Zhanlei; GAO Yunfei; ZHANG Guangde; WANG Wenbin; GE Lijuan; MAO Yahua; GUO Zhaoxia; WANG Qingtao; ZHAO Chuanyan
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

The non-rectangular hyperbola (NRH) equation is the most popular method that plots the photosynthetic light-response (PLR) curve and helps to identify plant photosynthetic capability. However, the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development. Recently, plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation, but plant height (H), an important parameter in plant growth phases, is not taken into account. In this study, H was incorporated into the NRH equation to establish the modified NRH equation, which could be used to estimate photosynthetic capability of herbage at different growth phases. To explore photosynthetic capability of herbage, we selected the dominant herbage species Potentilla anserina L. and Elymus nutans Griseb. in the Heihe River Basin, Northwest China as the research materials. Totally, twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016. Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H. The modified NRH equation, which is established by introducing H and an H-based adjustment factor into the NRH equation, described better the PLR curves of P. anserina and E. nutans than the original ones. The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.

submitted time 2019-10-26 Cooperative journals:《Journal of Arid Land》 Hits5370Downloads1005 Comment 0

8. chinaXiv:201901.00113 [pdf]

Environmental factors influencing snowfall and snowfall prediction in the Tianshan Mountains, Northwest China

ZHANG Xueting; LI Xuemei; LI Lanhai
Subjects: Geosciences >> Geography

Snowfall is one of the dominant water resources in the mountainous regions and is closely related to the development of the local ecosystem and economy. Snowfall predication plays a critical role in understanding hydrological processes and forecasting natural disasters in the Tianshan Mountains, where meteorological stations are limited. Based on climatic, geographical and topographic variables at 27 meteorological stations during the cold season (October to April) from 1980 to 2015 in the Tianshan Mountains located in Xinjiang of Northwest China, we explored the potential influence of these variables on snowfall and predicted snowfall using two methods: multiple linear regression (MLR) model (a conventional measuring method) and random forest (RF) model (a non-parametric and non-linear machine learning algorithm). We identified the primary influencing factors of snowfall by ranking the importance of eight selected predictor variables based on the relative contribution of each variable in the two models. Model simulations were compared using different performance indices and the results showed that the RF model performed better than the MLR model, with a much higher R2 value (R2=0.74; R2, coefficient of determination) and a lower bias error (RSR=0.51; RSR, the ratio of root mean square error to standard deviation of observed dataset). This indicates that the non-linear trend is more applicable for explaining the relationship between the selected predictor variables and snowfall. Relative humidity, temperature and longitude were identified as three of the most important variables influencing snowfall and snowfall prediction in both models, while elevation, aspect and latitude were of secondary importance, followed by slope and wind speed. These results will be beneficial to understand hydrological modeling and improve management and prediction of water resources in the Tianshan Mountains.

submitted time 2019-01-17 Cooperative journals:《Journal of Arid Land》 Hits6319Downloads1337 Comment 0

9. chinaXiv:201810.00184 [pdf]

Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China

BA Wulong; DU Pengfei; LIU Tie; BAO Anming; LUO Min; Mujtaba HASSAN; QIN Chengxin
Subjects: Geosciences >> History of Geosciences

Climate change may affect water resources by altering various processes in natural ecosystems. Dynamic and statistical downscaling methods are commonly used to assess the impacts of climate change on water resources. Objectively, both methods have their own advantages and disadvantages. In the present study, we assessed the impacts of climate change on water resources during the future periods (2020–2029 and 2040–2049) in the upper reaches of the Kaidu River Basin, Xinjiang, China, and discussed the uncertainties in the research processes by integrating dynamic and statistical downscaling methods (regional climate models (RCMs) and general circulation modes (GCMs)) and utilizing these outputs. The reference period for this study is 1990–1999. The climate change trend is represented by three bias-corrected RCMs (i.e., Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA), Regional Climate Model version 4 (RegCM4), and Seoul National University Meso-scale Model version 5 (SUN-MM5)) and an ensemble of GCMs on the basis of delta change method under two future scenarios (RCP4.5 and RCP8.5). We applied the hydrological SWAT (Soil and Water Assessment Tool) model which uses the RCMs/GCMs outputs as input to analyze the impacts of climate change on the stream flow and peak flow of the upper reaches of the Kaidu River Basin. The simulation of climate factors under future scenarios indicates that both temperature and precipitation in the study area will increase in the future compared with the reference period, with the largest increase of annual mean temperature and largest percentage increase of mean annual precipitation being of 2.4°C and 38.4%, respectively. Based on the results from bias correction of climate model outputs, we conclude that the accuracy of RCM (regional climate model) simulation is much better for temperature than for precipitation. The percentage increase in precipitation simulated by the three RCMs is generally higher than that simulated by the ensemble of GCMs. As for the changes in seasonal precipitation, RCMs exhibit a large percentage increase in seasonal precipitation in the wet season, while the ensemble of GCMs shows a large percentage increase in the dry season. Most of the hydrological simulations indicate that the total stream flow will decrease in the future due to the increase of evaporation, and the maximum percentage decrease can reach up to 22.3%. The possibility of peak flow increasing in the future is expected to higher than 99%. These results indicate that less water is likely to be available in the upper reaches of the Kaidu River Basin in the future, and that the temporal distribution of flow may become more concentrated.

submitted time 2018-10-29 Cooperative journals:《Journal of Arid Land》 Hits5244Downloads1714 Comment 0

10. chinaXiv:201712.00325 [pdf]

Reconstruction of hydrological changes based on tree-ring data of the Haba River, northwestern China

Zhang, Tongwen; Yuan, Yujiang
Subjects: Geosciences >> History of Geosciences

Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Larix sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957–2008. Moreover, floods and droughts in 1949–2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724–1758, 1780–1810, 1822–1853, 1931–1967, and 1986–2004) and four dry (1759–1779, 1811–1821, 1854–1930, and 1968–1985) periods in the streamflow reconstruction. Furthermore, four periods (1770–1796, 1816–1836, 1884–1949, and 1973–1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2–4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere–ocean system.

submitted time 2017-12-18 Cooperative journals:《Journal of Arid Land》 Hits1699Downloads980 Comment 0

12  Last  Go  [2 Pages/ 11 Totals]