Current Location:home > Browse

1. chinaXiv:201701.00029 [pdf]

Unified Phenomenological Decomposition of Radar Targets

Dong, Li; Yunhua, Zhang
Subjects: Geosciences >> Space Physics

Huynen phenomenological decomposition as the first for-malized target decomposition has not been widely accepted. Huynen’s preference for scattering symmetry and regularity restricts not only the application of this decomposition but also its unification with other target dichotomies such as the Barnes-Holm decomposition and Yang decomposition. The non-uniqueness issue then arises because we may have dif-ferent dichotomies of radar targets, but we have no idea on how to select them. Recently, a unified Huynen dichotomy was developed by Li and Zhang to extend Huynen decom-position for a full preference for symmetry and regularity, non-symmetry, irregularity, as well as their couplings. The dichotomy covers all the existing dichotomies and provides an excellent discrimination of radar targets. This paper gives a concise review of the Huynen-type target dichotomies to investigate the existing concerns influencing the application of such decompositions and the corresponding coping me-thods. We hope this review will help to promote the wide acceptation of Huynen-type target dichotomies in the future.

submitted time 2017-01-04 Hits1774Downloads964 Comment 0

2. chinaXiv:201701.00019 [pdf]

Unified Huynen Phenomenological Decomposition of Radar Targets and Its Classification Applications

Li, Dong; Zhang, Yunhua
Subjects: Geosciences >> Space Physics

Huynen decomposition (HD) as the first formalized target decomposition has not been widely accepted. The preference for symmetry and regularity restricts not only its application but also its unification with other target dichotomies. The nonuniqueness issue then arises because we may have different dichotomies of radar targets, but we have no idea on how to select them. In this paper, a unified Huynen dichotomy is developed by extending HD for a full preference for symmetry and regularity, nonsymmetry, irregularity, and their couplings. It covers all of the existing dichotomies and provides a unified selection mechanism for them. Scattering preference is identified as a main feature of target dichotomy, and its concise description is devised by relating each dichotomy to a canonical scattering. A scattering degree of preference (SDoP) parameter is defined to measure the preference of each dichotomy. In virtue of an adaptive combination and permutation of SDoPs, a scattering pyramid description of the mixed scattering is developed, which has better discrimination of target than entropy/alpha. An SDoP/alpha classification is further proposed by statistical modeling of the unified dichotomy, which is a competent alternative to entropy/alpha. The excellent performance of unified dichotomy makes us believe that the existing concerns on HD are well treated and the Huynen-Cloude controversy, in a sense, may be ended. ?2015 IEEE.

submitted time 2017-01-04 Hits1892Downloads1151 Comment 0

  [1 Pages/ 2 Totals]