注册 登录
返回旧版
EN 中文
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按主题分类
  • 6
  • 2
按作者
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 3
  • 2
  • 1
  • 1
  • 1
当前资源共 6条
隐藏摘要 点击量 时间 下载量
  • 1. chinaXiv:202301.00156
    下载全文

    Vacuum stability of the two-Higgs-doublet model with CP violation

    分类: 数学 >> 数学物理 分类: 物理学 >> 基本粒子与场物理学 提交时间: 2023-01-18

    宋义生

    摘要:

    In this paper, we present how to calculate the bounded from below or the vacuum stability  of scalar potential for a general CP violating two-Higgs-doublet model  by using the concepts of co-positivity and the gauge orbit spaces.  Meanwhile, the semi-positive definiteness is prove for a class of 4th-order 2-dimensional complex tensor.

    同行评议状态:待评议

    点击量 294 下载量 86 评论 0
  • 2. chinaXiv:202212.00066
    下载全文

    Local and Global Well-Posedness to Magneto-Elasticity System

    分类: 数学 >> 数学物理 提交时间: 2022-12-07

    Jia Zonglin

    摘要:In this article we employ classical tricks to give local and global well-posedness to MagnetoElasticity System. Different from many cases, we consider the equation which the magnetic field satisfies is Landau-Lifshitz system without viscidity, i.e. the Schrodinger flow. As is well known, people can not obtain ¨ global existence of Schrodinger flow at general cases. However, the reason why we do what others can not ¨ do is the Schrodinger flow with non-zero convection term.

    同行评议状态:待评议

    点击量 2657 下载量 138 评论 0
  • 3. chinaXiv:202105.00069
    下载全文

    Copositivity for a class of fourth order symmetric tensors given by scalar dark matter

    分类: 数学 >> 数学物理 提交时间: 2021-06-16

    宋义生 李旭东

    摘要:In this paper, we mainly discuss the copositivity of 4th order symmetric tensor defined by scalar dark matter stable under a $\mathbb{Z}_{3}$ discrete group, and obtain an analytically necessary and sufficient condition of the copositivity of such a class of tensors. Furthermore, this analytic expression may be used to verify the vacuum stability for $\mathbb{Z}_{3}$ scalar dark matter.

    同行评议状态:待评议

    点击量 14857 下载量 1037 评论 0
  • 4. chinaXiv:202011.00118
    下载全文

    A necessary and su#14;cient condition of positive definiteness for 4th order symmetric tensors defined in particle physics

    分类: 数学 >> 数学物理 提交时间: 2020-11-23

    宋义生 祁力群

    摘要: In this paper, we mainly discuss analytical expressions of positive definiteness for a special 4th order 3-dimensional symmetric tensor defined by the constructed model for a physical phenomenon. Firstly, an analytically necessary and sufficient conditions of 4th order 2-dimensional symmetric tensors are given to test its positive definiteness. Furthermore, by means of such a result, a necessary and sufficient condition of positive definiteness is obtained for a special 4th order 3-dimensional symmetric tensor. Such an analytical conditions can be used for verifying the vacuum stability of general scalar potentials of two real singlet scalar fields and the Higgs boson. The positive semi-definiteness conclusions are presented too.

    同行评议状态:待评议

    点击量 13357 下载量 1227 评论 0
  • 5. chinaXiv:201911.00094
    下载全文

    Copositivity for 3rd order symmetric tensors and applications

    分类: 数学 >> 数学物理 提交时间: 2019-11-23

    刘佳蕊 宋义生

    摘要: The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to better deal with it. So, it is provided that several analytically sufficient conditions for the copositivity of 3th order 2 dimensional (3 dimensional) symmetric tensors. Subsequently, applying these conclusions to 4th order tensors, the analytically sufficient conditions of copositivity are proved for 4th order 2 dimensional and 3 dimensional symmetric tensors. Finally, we apply these results to present analytical vacuum stability conditions for vacuum stability for $\mathbb{Z}_3$ scalar dark matter.

    同行评议状态:待评议

    点击量 24993 下载量 1987 评论 0
  • 6. chinaXiv:201810.00001
    下载全文

    霍奇星算子与外微分算符的组合规律

    分类: 物理学 >> 基本粒子与场物理学 分类: 数学 >> 数学物理 提交时间: 2018-10-08

    彭俊金

    摘要: 本文系统地探讨了霍奇星算子与外微分算符作用于任意微分形式场时两者的一般组合规律。首先,找到了保持微分形式场的次不变的两个组合算符,并通过二者的线性组合得到了一个新算符。其次,当由任意数目的霍奇星算子与外微分算符进行组合时,作者导出了所有形式上彼此互异的组合算符的统一表达式,这些表达式由单个霍奇星算子与外微分算符以及二者的任选两个的非零组合构成。在此基础上,分析了所有算符之间的相互作用关系,并根据这些算符对微分形式的次的改变情况,对它们进行了具体分类。最后,作为一个应用,作者详细讨论了如何由次相同的微分形式的线性组合来构造电磁场的麦克斯韦方程。

    同行评议状态:待评议

    点击量 30730 下载量 3200 评论 0
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心