• Lu-177-Labeled Cerasomes Encapsulating Indocyanine Green for Cancer Theranostics

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: This Article reported the fabrication of a robust theranostic cerasome encapsulating indocyanine green (ICG) by incorporating 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine-N-[carboxy(polyethylene glycol)2000]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DSPE-PEG(2000)-DOTA), followed by chelating radioisotope of Lu-177. Its applications in optical and nuclear imaging of tumor uptake and biodistribution, as well as photothermal killing of cancer cells, were investigated. It was found that the obtained cerasome could act efficiently as fluorescence contrast agent as well as nuclear imaging tracer. Encapsulating ICG into cerasome could protect ICG from degradation, aggregation, and fast elimination from body, resulting in remarkable improvement in near-infrared fluorescence imaging, photothermal stability, and in vivo pharmacokinetic profile. Both fluorescence and nuclear imaging showed that such agent could selectively accumulate in tumor site after intravenous injection of the cerasome agent into Lewis lung carcinoma tumor bearing mice, resulting in efficient photothermal ablation of tumor through a one-time NIR laser irradiation at the best time window. The ability to track the uptake of cerasomes on a whole body basis could provide researchers with an excellent tool for developing cerasome-based drug delivery agents, especially the strategy of labeling cerasomes with theranostic radionuclide Lu-177, enabling the ability of the Lu-177-labeled cerasomes for radionuclide cancer therapy and even the combined therapy.

  • Development of a Reversibly Switchable Fluorescent Protein for Super-Resolution Optical Fluctuation Imaging (SOFI)

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: Reversibly switchable fluorescent proteins (RSFPs) can be effectively used for super-resolution optical fluctuation imaging (SOFI) based on the switching and fluctuation of single molecules. Several properties of RSFPs strongly influence the quality of SOFI images. These properties include (i) the averaged fluorescence intensity in the fluctuation state, (ii) the on/off contrast ratio, (iii) the photostability, and (iv) the oligomerization tendency. The first three properties determine the fluctuation range of the imaged pixels and the SOFI signal, which are of essential importance to the spatial resolution, and the last may lead to artificial aggregation of target proteins. The RSFPs that are currently used for SOFI are low in averaged fluorescence intensity in the fluctuation state, photostability, and on/off contrast ratio, thereby limiting the range of application of SOFI in biological super-resolution imaging. In this study, we developed a novel monomeric green RSFP termed Skylan-S, which features very high photostability, contrast ratio, and averaged fluorescence intensity in the fluctuation state. Taking advantage of the excellent optical properties of Skylan-S, a 4-fold improvement in the fluctuation range of the imaged pixels and higher SOFI resolution can be obtained compared with Dronpa. Furthermore, super-resolution imaging of the actin or tubulin structures and clathrin-coated pits (CCPs) in living U2OS cells labeled with Skylan-S was demonstrated using the SOFI technique. Overall, Skylan-S developed with outstanding photochemical properties is promising for long-time SOH imaging with high spatial-temporal resolution.