• Typical Raman Spectroscopy Ttechnology and Research Progress in Agriculture Detection

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: Raman spectroscopy is a type of scattering spectroscopy with features such as rapid, less susceptible to moisture interference, no sample pre-treatment and in vivo detection. As a powerful characterization tool for analyzing and testing the molecular composition and structure of substances, Raman spectroscopy is also playing an extremely important role in the detection of plant and animal phenotypes, food safety, soil and water quality in the agricultural field with the continuous improvement of Raman spectroscopy technology. In this paper, the detection principles of Raman spectroscopy are introduced, and the new progresses of eight Raman spectroscopy technology are summarized, including confocal microscopy Raman spectroscopy, Fourier transform Raman spectroscopy, surface-enhanced Raman spectroscopy, tip-enhanced Raman spectroscopy, resonance Raman spectroscopy, spatially shifted Raman spectroscopy, frequency-shifted excitation Raman difference spectroscopy and Raman spectroscopy based on nonlinear optics, etc. And their advantages and disadvantages and application scenarios are prerented, respectively. The applications of Raman spectroscopy in plant detection, soil detection, water quality detection, food detection, etc. are summarized. It can be specifically subdivided into plant phenotype, plant stress, soil pesticide residue detection, soil colony detection, soil nutrient detection, food pesticide detection, food quality detection, food adulteration detection, and water quality detection. In future agricultural applications, the elimination of fluorescence background due to complex living organisms in Raman spectroscopy is the next research direction. The study of stable enhanced substrates is an important direction in the application of Surface Enhanced Raman Spectroscopy (SERS). In order to meet the measurement of different scenarios, portable and telemetric Raman spectrometers will also play an important role in the future. Raman spectroscopy needs to be further explored for a wide variety of research objects in agriculture, especially for applications in animal science, for which there is still a paucity of relevant studies up to now. In the existing field of agricultural research, it is necessary to pursue the characterization of more specific substances by Raman spectroscopy, which can prompt the application of Raman spectroscopy for a wider range of uses in agriculture. Further, the pursuit of lower detection limits and higher stability for practical applications is also the direction of development of Raman spectroscopy in the field of agriculture. Finally, the challenges that need to be solved and the future development directions of Raman spectroscopy are proposed in the field of agriculture in order to bring more inspiration to future agricultural production and research.

  • Underwater Fish Species Identification Model and Real-Time Identification System

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: Convolutional neural network models have different advantages and disadvantages, it is becoming more and more difficult to select an appropriate convolutional neural network model in an actual fish identification project. The identification of underwater fish is a challenge task due to varies in illumination, low contrast, high noise, low resolution and sample imbalance between each type of image from the real underwater environment. In addition, deploying models to mobile devices directly will reduce the accuracy of the model sharply. In order to solve the above problems, Fish Recognition Ground-Truth dataset was used to training model in this study, which is provided by Fish4Knowledge project from University of Edinburgh. It contains 27, 370 images with 23 fish species, and has been labeled manually by marine biologists. AlexNet, GoogLeNet, ResNet and DenseNet models were selected initially according to the characteristics of real-time underwater fish identification task, then a comparative experiment was designed to explore the best network model. Random image flipping, rotation and color dithering were used to enhance data based on ground-truth fish dataset in response to the limited number of underwater fish images. Considering that there was a serious imbalance in the number of samples in each category, the label smoothing technology was used to alleviate model overfitting. The Ranger optimizer and Cosine learning rate attenuation strategy were used to further improve the training effect of the models. The accuracy and recall rate information of each model were recorded and counted. The results showed that, the accuracy and recall rate of the fish recognition model based on DenseNet reached 99.21% and 96.77% in train set and validation set respectively, its F1 value reached 0.9742, which was the best model obtained in the experiment. Finally, a remote fish identification system was designed based on Python language, in this system the model was deployed to linux server and the Android APP was responsible for uploading fish images via http to request server to identify the fishes and displaying the identification information returned by server, such as fish species, profiles, habits, distribution, etc. A set of recognition tests were performed on real Android phone and the results showed that in the same local area net the APP could show fish information rapidly and exactly within 1 s.