• Research Progress and Technology Trend of Intelligent Morning of Dairy Cow Motion Behavior

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: The motion behavior of dairy cows contains much of health information. The application of information and intelligent technology will help farms grasp the health status of dairy cows in time and improve breeding efficiency. In this paper, the development trend of intelligent morning technology of cow's motion behavior was mainly analyzed. Firstly, on the basis of expounding the significance of monitoring the basic motion (lying, walking, standing), oestrus, breathing, rumination and limping of dairy cows, the necessity of behavior monitoring of dairy cows was introduced. Secondly, the current research status was summarized from contact monitoring methods and non-contact monitoring methods in chronological order. The principle and achievements of related research were introduced in detail and classified. It is found that the current contact monitoring methods mainly rely on acceleration sensors, pedometers and pressure sensors, while the non-contact monitoring methods mainly rely on video images, including traditional video image analysis and video image analysis based on deep learning. Then, the development status of cow behavior monitoring industry was analyzed, and the main businesses and mainstream products of representative livestock farm automation equipment suppliers were listed. Industry giants, such as Afimilk and DeLaval, as well as their products such as intelligent collar (AfiCollar), pedometer (AfiActll Tag) and automatic milking equipment (VMS™ V300) were introduced. After that, the problems and challenges of current contact and non-contact monitoring methods of dairy cow motion behavior were put forward. The current intelligent monitoring methods of dairy cows' motion behavior are mainly wearable devices, but they have some disadvantages, such as bring stress to dairy cows and are difficult to install and maintain. Although the non-contact monitoring methods based on video image analysis technology does not bring stress to dairy cows and is low cost, the relevant research is still in its infancy , and there is still a certain distance from commercial use. Finally, the future development directions of relevant key technologies were prospected, including miniaturization and integration of wearable monitoring equipment, improving the robustness of computer vision technology, multi-target monitoring with limited equipment and promoting technology industrialization.

  • Detection Method of Apple Mould Core Based on Dielectric Characteristics

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: Apple mouldy core disease often occurs in the ventricle of apples and cannot be effectively identified by appearance. Near-infrared spectroscopy, nuclear magnetic resonance and other methods are usually used in traditional apple mouldy core disease detection, but these methods require complex equipment and high detection costs. In this research, a simple and fast nondestructive detection method of apple mouldy core disease was proposed by using a dielectric method to construct an apple mouldy core disease detection model. Japan's Hioki 3532-50 LCR tester was used to collect 108 dielectric indicators (12 dielectric indicators at 9 frequencies) of 220 apples as the original data. Due to the large differences in the distribution of data collected with different dielectric indexes and different frequencies, a standardized method was used for data preprocessing to eliminate the problem of large differences in dielectric data distribution. Afterwards, in order to eliminate the redundant information between the data, the principal component analysis algorithm was used to reduce the data dimensionality, and finally the three algorithms of BP neural network (BPNN), support vector machine (SVM) and random forest (RF) were used to construct the mouldy core disease detection model. After pre-experiment, the most effective parameters of each algorithm were selected, the test results showed that the apple mouldy core disease detection model based on the RF algorithm obtained the best performance, and the detection accuracy rate reached 96.66% and 95.71% in the training set (150 apples) and the test set (70 apples). The mouldy core disease detection model constructed by using BPNN was the second most effective, and the detection accuracy could reach 94.66% and 94.29%, respectively. The detection effect of the model built by using SVM was relatively poor, and the detection accuracies were 93.33% and 91.43%, respectively. The experimental results showed that the model constructed by using RF can more effectively identify mouldy core disease apples and healthy apples. This study could provide references for apple diseases and insect pests and non-destructive testing of apple quality.