按提交时间
按主题分类
按作者
按机构
您选择的条件: Jiaxin Han
  • The Jiao Tong University Spectroscopic Telescope Project

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-02-07 合作期刊: 《天文技术与仪器(英文)》

    摘要:The Jiao Tong University Spectroscopic Telescope (JUST) is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations. The JUST primary mirror is composed of 18 hexagonal segments, each with a diameter of 1.1 m. JUST provides two Nasmyth platforms for placing science instruments. One Nasmyth focus fits a field of view of 10 ′ and the other has an extended field of view of 1.2° with correction optics. A tertiary mirror is used to switch between the two Nasmyth foci. JUST will be installed at a site at Lenghu in Qinghai Province, China, and will conduct spectroscopic observations with three types of instruments to explore the dark universe, trace the dynamic universe, and search for exoplanets: (1) a multi-fiber (2000 fibers) medium-resolution spectrometer (R=4 000−5 000) to spectroscopically map galaxies and large-scale structure; (2) an integral field unit (IFU) array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy; (3) a high-resolution spectrometer (R~100 000) designed to identify Jupiter analogs and Earth-like planets, with the capability to characterize the atmospheres of hot exoplanets.

  • The outermost edges of the Milky Way halo from galaxy kinematics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We measure for the first time the outermost edges of the Milky Way (MW) halo in terms of the depletion and turnaround radii. The inner depletion radius, $r_\mathrm{id}$, identified at the location of maximum infall velocity, separates a growing halo from the draining environment, while the turnaround radius, $r_\mathrm{ta}$, marks the outermost edge of infalling material towards the halo, both of which are located well outside the virial radius. Using the motions of nearby dwarf galaxies within $3\mathrm{Mpc}$, we obtain a marginal detection of the infall zone around the MW with a maximum velocity of $v_\mathrm{inf, max}=-46_{-39}^{+24}\mathrm{km s^{-1}}$. This enables us to measure $r_\mathrm{id}=559\pm 107 \mathrm{kpc}$ and $r_\mathrm{ta}=839\pm 121 \mathrm{kpc}$. The measured depletion radius is about 1.5 times the MW virial radius ($R_\mathrm{200m}$) measured from internal dynamics. Compared with halos in the cosmological simulation Illustris TNG100, the factor 1.5 is consistent with that of halos with similar masses and dynamical environments to the MW but slightly smaller than typical values of Local Group analogs, potentially indicating the unique evolution history of the MW. These measurements of halo edges directly quantify the ongoing evolution of the MW outer halo and provide constraints on the current dynamical state of the MW that are independent from internal dynamics.

  • What to expect from dynamical modelling of cluster haloes II. Investigating dynamical state indicators with Random Forest

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the importances of various dynamical features in predicting the dynamical state (DS) of galaxy clusters, based on the Random Forest (RF) machine learning approach. We use a large sample of galaxy clusters from the Three Hundred Project of hydrodynamical zoomed-in simulations, and construct dynamical features from the raw data as well as from the corresponding mock maps in the optical, X-ray, and Sunyaev-Zel'dovich (SZ) channels. Instead of relying on the impurity based feature importance of the RF algorithm, we directly use the out-of-bag (OOB) scores to evaluate the importances of individual features and different feature combinations. Among all the features studied, we find the virial ratio, $\eta$, to be the most important single feature. The features calculated directly from the simulations and in 3-dimensions carry more information on the DS than those constructed from the mock maps. Compared with the features based on X-ray or SZ maps, features related to the centroid positions are more important. Despite the large number of investigated features, a combination of up to three features of different types can already saturate the score of the prediction. Lastly, we show that the most sensitive feature $\eta$ is strongly correlated with the well-known half-mass bias in dynamical modelling. Without a selection in DS, cluster halos have an asymmetric distribution in $\eta$, corresponding to an overall positive half-mass bias. Our work provides a quantitative reference for selecting the best features to discriminate the DS of galaxy clusters in both simulations and observations.

  • What to expect from dynamical modelling of cluster haloes I. The information content of different dynamical tracers

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using hydrodynamical simulations, we study how well the underlying gravitational potential of a galaxy cluster can be modelled dynamically with different types of tracers. In order to segregate different systematics and the effects of varying estimator performances, we first focus on applying a generic minimal assumption method (oPDF) to model the simulated haloes using the full 6-D phasespace information. We show that the halo mass and concentration can be recovered in an ensemble unbiased way, with a stochastic bias that varies from halo to halo, mostly reflecting deviations from steady state in the tracer distribution. The typical systematic uncertainty is $\sim 0.17$ dex in the virial mass and $\sim 0.17$ dex in the concentration as well when dark matter particles are used as tracers. The dynamical state of satellite galaxies are close to that of dark matter particles, while intracluster stars are less in a steady state, resulting in a $\sim$ 0.26 dex systematic uncertainty in mass. Compared with galactic haloes hosting Milky-Way-like galaxies, cluster haloes show a larger stochastic bias in the recovered mass profiles. We also test the accuracy of using intracluster gas as a dynamical tracer modelled through a generalised hydrostatic equilibrium equation, and find a comparable systematic uncertainty in the estimated mass to that using dark matter. Lastly, we demonstrate that our conclusions are largely applicable to other steady-state dynamical models including the spherical Jeans equation, by quantitatively segregating their statistical efficiencies and robustness to systematics. We also estimate the limiting number of tracers that leads to the systematics-dominated regime in each case.

  • The stellar mass in and around isolated central galaxies: connections to the total mass distribution through galaxy-galaxy lensing in the Hyper Suprime-Cam survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using photometric galaxies from the HSC survey, we measure the stellar mass density profiles for satellite galaxies as a function of the projected distance, $r_p$, to isolated central galaxies (ICGs) selected from SDSS/DR7 spectroscopic galaxies at $z\sim0.1$. By stacking HSC images, we also measure the projected stellar mass density profiles for ICGs and their stellar halos. The total mass distributions are further measured from HSC weak lensing signals. ICGs dominate within $\sim$0.15 times the halo virial radius ($0.15R_{200}$). The stellar mass versus total mass fractions drop with the increase in $r_p$ up to $\sim0.15R_{200}$, beyond which they are less than 1\% while stay almost constant, indicating the radial distribution of satellites trace dark matter. The total stellar mass in satellites is proportional to the virial mass of the host halo, $M_{200}$, for ICGs more massive than $10^{10.5}M_\odot$, i.e., $M_{\ast,\mathrm{sat}} \propto M_{200}$, whereas the relation between the stellar mass of ICGs $+$ stellar halos and $M_{200}$ is close to $M_{\ast,\mathrm{ICG+diffuse}}\propto M_{200}^{1/2}$. Below $10^{10.5}M_\odot$, the change in $M_{200}$ is much slower with the decrease in $M_{\ast,\mathrm{ICG+diffuse}}$. At fixed stellar mass, red ICGs are hosted by more massive dark matter halos and have more satellites. At $M_{200}\sim10^{12.7}M_\odot$, both $M_{\ast,\mathrm{sat}}$ and the fraction of stellar mass in satellites versus total stellar mass, $f_\mathrm{sat}$, tend to be slightly higher around blue ICGs, perhaps implying the late formation of blue galaxies. $f_\mathrm{sat}$ increases with the increase in both $M_{\ast,\mathrm{ICG+diffuse}}$ and $M_{200}$, and scales more linearly with $M_{200}$. We provide best-fitting formulas for these scaling relations and for red and blue ICGs separately.

  • A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose a random forest (RF) machine learning approach to determine the accreted stellar mass fractions ($f_\mathrm{acc}$) of central galaxies, based on various dark matter halo and galaxy features. The RF is trained and tested using 2,710 galaxies with stellar mass $\log_{10}M_\ast/M_\odot>10.16$ from the TNG100 simulation. Galaxy size is the most important individual feature when calculated in 3-dimensions, which becomes less important after accounting for observational effects. For smaller galaxies, the rankings for features related to merger histories increase. When an entire set of halo and galaxy features are used, the prediction is almost unbiased, with root-mean-square error (RMSE) of $\sim$0.068. A combination of up to three features with different types (galaxy size, merger history and morphology) already saturates the power of prediction. If using observable features, the RMSE increases to $\sim$0.104, and a combined usage of stellar mass, galaxy size plus galaxy concentration achieves similar predictions. Lastly, when using galaxy density, velocity and velocity dispersion profiles as features, which approximately represent the maximum amount of information extracted from galaxy images and velocity maps, the prediction is not improved much. Hence the limiting precision of predicting $f_\mathrm{acc}$ is $\sim$0.1 with observables, and the multi-component decomposition of galaxy images should have similar or larger uncertainties. If the central black hole mass and the spin parameter of galaxies can be accurately measured in future observations, the RMSE is promising to be further decreased by $\sim$20%.

  • Mining the information content of member galaxies in the halo mass modelling

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Motivated by previous findings that the magnitude gap between certain satellite galaxy and the central galaxy can be used to improve the estimation of halo mass, we carry out a systematic study of the information content of different member galaxies in the modelling of the host halo mass using a machine learning approach. We employ data from the hydrodynamical simulation IllustrisTNG and train a Random Forest (RF) algorithm to predict a halo mass from the stellar masses of its member galaxies. Exhaustive feature selection is adopted to disentangle the importances of different galaxy members. We confirm that an additional satellite does improve the halo mass estimation compared to that estimated by the central alone. However, the magnitude of this improvement does not differ significantly using different satellite galaxies. When three galaxies are used in the halo mass prediction, the best combination is always that of the central galaxy with the most massive satellite and the smallest satellite. Furthermore, among the top 7 galaxies, the combination of a central galaxy and two or three satellite galaxies gives a near-optimal estimation of halo mass, and further addition of galaxies does not raise the precision of the prediction. We demonstrate that these dependences can be understood from the shape variation of the conditional satellite distribution, with different member galaxies accounting for distinct halo-dependent features in different parts of the cumulative stellar mass function.

  • Groups and protocluster candidates in the CLAUDS and HSC-SSP joint deep surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using the extended halo-based group finder developed by Yang et al. (2021), which is able to deal with galaxies via spectroscopic and photometric redshifts simultaneously, we construct galaxy group and candidate protocluster catalogs in a wide redshift range ($0 2.0$. By checking the galaxy number distributions within a $5-7\ h^{-1}\mathrm{Mpc}$ projected separation and a redshift difference $\Delta z \le 0.1$ around those richest groups at redshift $z>2$, we identified a list of 761, 343 and 43 protocluster candidates in the redshift bins $2\leq z<3$, $3\leq z<4$ and $z \geq 4$, respectively. In general, these catalogs of galaxy groups and protocluster candidates will provide useful environmental information in probing galaxy evolution along the cosmic time.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.

  • The Universal Specific Merger Rate of Dark Matter Halos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We employ a set of high resolution N-body simulations to study the merger rate of dark matter halos. We define a specific merger rate by normalizing the average number of mergers per halo with the logarithmic mass growth change of the hosts at the time of accretion. Based on the simulation results, we find that this specific merger rate, $\mathrm{d}N_{\mathrm{merge}}(\xi|M,z)/\mathrm{d}\xi/\mathrm{d}\log M(z)$, has a universal form, which is only a function of the mass ratio of merging halo pairs, $\xi$, and does not depend on the host halo mass, $M$, or redshift, $z$, over a wide range of masses ($10^{12}\lesssim M \lesssim10^{14}\,M_\odot/h$) and merger ratios ($\xi\ge 1e-2$). We further test with simulations of different $\Omega_m$ and $\sigma_8$, and get the same specific merger rate. The universality of the specific merger rate shows that halos in the universe are built up self-similarly, with a universal composition in the mass contributions and an absolute merger rate that grows in proportion to the halo mass growth. As a result, the absolute merger rate relates with redshift and cosmology only through the halo mass variable, whose evolution can be readily obtained from the universal mass accretion history (MAH) model of \cite{2009ApJ...707..354Z}. Lastly, we show that this universal specific merger rate immediately predicts an universal un-evolved subhalo mass function that is independent on the redshift, MAH or the final halo mass, and vice versa.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.