您选择的条件: Li-Ming Yu
  • X-ray Unveiling Events in a z~1.6 Active Galactic Nucleus in the 7 Ms Chandra Deep Field-South

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the extreme X-ray variability of a z = 1.608 active galactic nucleus in the 7 Ms Chandra Deep Field-South (XID 403), which showed two significant X-ray brightening events. In the first event, XID 403 brightened by a factor of $>2.5$ in $\lesssim6.1$ rest-frame days in the observed-frame 0.5-5 keV band. The event lasted for $\approx5.0\textrm{-}7.3$ days, and then XID 403 dimmed by a factor of $>6.0$ in $\lesssim6.1$ days. After $\approx1.1\textrm{-}2.5$ years in the rest frame (including long observational gaps), it brightened again with the 0.5-5 keV flux increasing by a factor of $>12.6$. The second event lasted over 251 days and the source remained bright until the end of the 7 Ms exposure. The spectrum is a steep power law (photon index $\Gamma=2.8\pm0.3$) without obscuration during the second outburst, and the rest-frame 2-10 keV luminosity reaches $1.5^{+0.8}_{-0.5}\times10^{43}$ erg s$^{-1}$; there is no significant spectral evolution within this epoch. The infrared-to-UV spectral energy distribution of XID 403 is dominated by the host galaxy. There is no significant optical/UV variability and $R$-band (rest-frame $\approx2500$ $\unicode{xC5}$) brightening contemporaneous with the X-ray brightening. The extreme X-ray variability is likely due to two X-ray unveiling events, where the line of sight to the corona is no longer shielded by high-density gas clumps in a small-scale dust-free absorber. XID 403 is probably a high-redshift analog of local narrow-line Seyfert 1 galaxies, and the X-ray absorber is a powerful accretion-disk wind. On the other hand, we cannot exclude the possibility that XID 403 is an unusual candidate for tidal disruption events.

  • X-ray Unveiling Events in a z~1.6 Active Galactic Nucleus in the 7 Ms Chandra Deep Field-South

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the extreme X-ray variability of a z = 1.608 active galactic nucleus in the 7 Ms Chandra Deep Field-South (XID 403), which showed two significant X-ray brightening events. In the first event, XID 403 brightened by a factor of $>2.5$ in $\lesssim6.1$ rest-frame days in the observed-frame 0.5-5 keV band. The event lasted for $\approx5.0\textrm{-}7.3$ days, and then XID 403 dimmed by a factor of $>6.0$ in $\lesssim6.1$ days. After $\approx1.1\textrm{-}2.5$ years in the rest frame (including long observational gaps), it brightened again with the 0.5-5 keV flux increasing by a factor of $>12.6$. The second event lasted over 251 days and the source remained bright until the end of the 7 Ms exposure. The spectrum is a steep power law (photon index $\Gamma=2.8\pm0.3$) without obscuration during the second outburst, and the rest-frame 2-10 keV luminosity reaches $1.5^{+0.8}_{-0.5}\times10^{43}$ erg s$^{-1}$; there is no significant spectral evolution within this epoch. The infrared-to-UV spectral energy distribution of XID 403 is dominated by the host galaxy. There is no significant optical/UV variability and $R$-band (rest-frame $\approx2500$ $\unicode{xC5}$) brightening contemporaneous with the X-ray brightening. The extreme X-ray variability is likely due to two X-ray unveiling events, where the line of sight to the corona is no longer shielded by high-density gas clumps in a small-scale dust-free absorber. XID 403 is probably a high-redshift analog of local narrow-line Seyfert 1 galaxies, and the X-ray absorber is a powerful accretion-disk wind. On the other hand, we cannot exclude the possibility that XID 403 is an unusual candidate for tidal disruption events.

  • A Rapid and Large-Amplitude X-ray Dimming Event in a z ~ 2.6 Radio-Quiet Quasar

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report a dramatic fast X-ray dimming event in a z=2.627 radio-quiet type 1 quasar, which has an estimated supermassive black hole (SMBH) mass of $6.3\times 10^{9} M_\odot$. In the high X-ray state, it showed a typical level of X-ray emission relative to its UV/optical emission. Then its 0.5-2 keV (rest-frame 1.8-7.3 keV) flux dropped by a factor of $\approx7.6$ within two rest-frame days. The dimming is associated with spectral hardening, as the 2-7 keV (rest-frame 7.3-25.4 keV) flux dropped by only $17\%$ and the effective power-law photon index of the X-ray spectrum changed from $\approx2.3$ to $\approx0.9$. The quasar has an infrared (IR)-to-UV spectral energy distribution and a rest-frame UV spectrum similar to those of typical quasars, and it does not show any significant long-term variability in the IR and UV/optical bands. Such an extremely fast and large-amplitude X-ray variability event has not been reported before in luminous quasars with such massive SMBHs. The X-ray dimming is best explained by a fast-moving absorber crossing the line of sight and fully covering the X-ray emitting corona. Adopting a conservatively small size of $5 {G} M_{\rm BH}/c^2$ for the X-ray corona, the transverse velocity of the absorber is estimated to be $\approx 0.9c$. The quasar is likely accreting with a high or even super-Eddington accretion rate, and the high-velocity X-ray absorber is probably related to a powerful accretion-disk wind. Such an energetic wind may eventually evolve into a massive galactic-scale outflow, providing efficient feedback to the host galaxy.