您选择的条件: Zhaozhou Li
  • What to expect from dynamical modelling of cluster haloes I. The information content of different dynamical tracers

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using hydrodynamical simulations, we study how well the underlying gravitational potential of a galaxy cluster can be modelled dynamically with different types of tracers. In order to segregate different systematics and the effects of varying estimator performances, we first focus on applying a generic minimal assumption method (oPDF) to model the simulated haloes using the full 6-D phasespace information. We show that the halo mass and concentration can be recovered in an ensemble unbiased way, with a stochastic bias that varies from halo to halo, mostly reflecting deviations from steady state in the tracer distribution. The typical systematic uncertainty is $\sim 0.17$ dex in the virial mass and $\sim 0.17$ dex in the concentration as well when dark matter particles are used as tracers. The dynamical state of satellite galaxies are close to that of dark matter particles, while intracluster stars are less in a steady state, resulting in a $\sim$ 0.26 dex systematic uncertainty in mass. Compared with galactic haloes hosting Milky-Way-like galaxies, cluster haloes show a larger stochastic bias in the recovered mass profiles. We also test the accuracy of using intracluster gas as a dynamical tracer modelled through a generalised hydrostatic equilibrium equation, and find a comparable systematic uncertainty in the estimated mass to that using dark matter. Lastly, we demonstrate that our conclusions are largely applicable to other steady-state dynamical models including the spherical Jeans equation, by quantitatively segregating their statistical efficiencies and robustness to systematics. We also estimate the limiting number of tracers that leads to the systematics-dominated regime in each case.

  • The Response of Dark Matter Haloes to Gas Ejection: CuspCore II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose an analytic model, CuspCore II, for the response of dark matter (DM) haloes to central gas ejection, as a mechanism for generating DM-deficient cores in dwarfs and high-z massive galaxies. We test this model and three other methods using idealized N-body simulations. The current model is physically justified and provides more accurate predictions than the earlier version, CuspCore I (Freundlich et al. 2020). The CuspCore model assumes an instantaneous change of potential, followed by a relaxation to a new Jeans equilibrium. The relaxation turns out to be violent relaxation during the first orbital period, followed by phase mixing. By tracing the energy diffusion dE=dU(r) iteratively, the model reproduces the simulated DM profiles with ~10% accuracy or better. A method based on adiabatic invariants shows similar precision for moderate mass change but underestimates the DM expansion for strong gas ejection. A method based on a simple empirical relation between DM and total mass ratios makes slightly inferior predictions. The crude assumption used in CuspCore I, of energy conservation for shells that encompass a fixed DM mass, turns out to underestimate the DM response, which can be partially remedied by introducing an alternative "energy" definition. Our model is being generalized to address the differential response of a multi-component system of stars and DM in the formation of DM-deficient galaxies.

  • Efficient Formation of Massive Galaxies at Cosmic Dawn by Feedback-Free Starbursts

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: JWST observations reveal a surprising excess of luminous galaxies at $z\sim 10$, consistent with efficient conversion of the accreted gas into stars, unlike the suppression of star formation by feedback at later times. We show that the high densities and low metallicities at this epoch guarantee a high star-formation efficiency in the most massive dark-matter haloes. Feedback-free starbursts (FFBs) occur when the free-fall time is shorter than $\sim 1$ Myr, below the time for low-metallicity massive stars to develop winds and supernovae. This corresponds to a characteristic density of $\sim 3\times 10^3$cm$^{-3}$. A comparable threshold density permits a starburst by allowing cooling to star-forming temperatures in a free-fall time. The galaxies within $\sim 10^{11} M_\odot$ haloes at $z \sim 10$ are expected to have FFB densities. The halo masses allow efficient gas supply by cold streams in a halo crossing time $\sim 80$ Myr. The FFBs gradually turn all the accreted gas into stars in clusters of $\sim 10^{4-7.5} M_\odot$ within galaxies that are rotating discs or shells. The starbursting clouds are shielded against feedback from earlier stars. We predict high star-formation efficiency above thresholds in redshift and halo mass, where the density is $10^{3-4}$cm$^{-3}$. The $z\sim 10$ haloes of $\sim 10^{10.8} M_\odot$ are predicted to host galaxies of $\sim 10^{10} M_\odot$ with SFR $\sim 65 M_\odot$ yr$^{-1}$ and sub-kpc sizes. The metallicity is $\leq 0.1 Z_\odot$ with little gas, dust, outflows and hot circumgalactic gas, allowing a top-heavy IMF but not requiring it. The post-FFB evolution of compact galaxies with thousands of young clusters may have implications on black-hole growth and globular clusters at later times.

  • A machine learning approach to infer the accreted stellar mass fractions of central galaxies in the TNG100 simulation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose a random forest (RF) machine learning approach to determine the accreted stellar mass fractions ($f_\mathrm{acc}$) of central galaxies, based on various dark matter halo and galaxy features. The RF is trained and tested using 2,710 galaxies with stellar mass $\log_{10}M_\ast/M_\odot>10.16$ from the TNG100 simulation. Galaxy size is the most important individual feature when calculated in 3-dimensions, which becomes less important after accounting for observational effects. For smaller galaxies, the rankings for features related to merger histories increase. When an entire set of halo and galaxy features are used, the prediction is almost unbiased, with root-mean-square error (RMSE) of $\sim$0.068. A combination of up to three features with different types (galaxy size, merger history and morphology) already saturates the power of prediction. If using observable features, the RMSE increases to $\sim$0.104, and a combined usage of stellar mass, galaxy size plus galaxy concentration achieves similar predictions. Lastly, when using galaxy density, velocity and velocity dispersion profiles as features, which approximately represent the maximum amount of information extracted from galaxy images and velocity maps, the prediction is not improved much. Hence the limiting precision of predicting $f_\mathrm{acc}$ is $\sim$0.1 with observables, and the multi-component decomposition of galaxy images should have similar or larger uncertainties. If the central black hole mass and the spin parameter of galaxies can be accurately measured in future observations, the RMSE is promising to be further decreased by $\sim$20%.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.

  • The Universal Specific Merger Rate of Dark Matter Halos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We employ a set of high resolution N-body simulations to study the merger rate of dark matter halos. We define a specific merger rate by normalizing the average number of mergers per halo with the logarithmic mass growth change of the hosts at the time of accretion. Based on the simulation results, we find that this specific merger rate, $\mathrm{d}N_{\mathrm{merge}}(\xi|M,z)/\mathrm{d}\xi/\mathrm{d}\log M(z)$, has a universal form, which is only a function of the mass ratio of merging halo pairs, $\xi$, and does not depend on the host halo mass, $M$, or redshift, $z$, over a wide range of masses ($10^{12}\lesssim M \lesssim10^{14}\,M_\odot/h$) and merger ratios ($\xi\ge 1e-2$). We further test with simulations of different $\Omega_m$ and $\sigma_8$, and get the same specific merger rate. The universality of the specific merger rate shows that halos in the universe are built up self-similarly, with a universal composition in the mass contributions and an absolute merger rate that grows in proportion to the halo mass growth. As a result, the absolute merger rate relates with redshift and cosmology only through the halo mass variable, whose evolution can be readily obtained from the universal mass accretion history (MAH) model of \cite{2009ApJ...707..354Z}. Lastly, we show that this universal specific merger rate immediately predicts an universal un-evolved subhalo mass function that is independent on the redshift, MAH or the final halo mass, and vice versa.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.