您选择的条件: Ji-Feng Liu
  • An environmental analysis of the Type Ib SN 2019yvr and the possible presence of an inflated binary companion

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: SN 2019yvr is the second Type Ib supernova (SN) with a possible direct detection of its progenitor (system); however, the spectral energy distribution (SED) of the pre-explosion source appears much cooler and overluminous than an expected helium-star progenitor. Using Hubble Space Telescope (HST) images and MUSE integral-field-unit (IFU) spectroscopy, we find the SN environment contains three episodes of star formation; the low ejecta mass suggests the SN progenitor is most likely from the oldest population, corresponding to an initial mass of 10.4$^{+1.5}_{-1.3}$ $M_\odot$. The pre-explosion SED can be reproduced by two components, one for the hot and compact SN progenitor and one for a cool and inflated yellow hypergiant (YHG) companion that dominates the brightness. Thus, SN 2019yvr could possibly be the first Type Ib/c SN for which the progenitor's binary companion is directly detected on pre-explosion images. Both the low progenitor mass and the YHG companion suggest significant binary interaction during their evolution. Similar to SN 2014C, SN 2019yvr exhibits a metamorphosis from Type Ib to Type IIn, showing signatures of interaction with hydrogen-rich circumstellar material (CSM) at >150 days; our result supports enhanced pre-SN mass loss as an important process for hydrogen-poor stars at the low mass end of core-collapse SN progenitors.

  • An Empirical Bayesian Approach to Limb-darkening in Modeling WASP-121b Transit Light Curves

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a novel, iterative method using an empirical Bayesian approach for modeling the limb darkened WASP-121b transit from the TESS light curve. Our method is motivated by the need to improve $R_{p}/R_{\ast}$ estimates for exoplanet atmosphere modeling, and is particularly effective with the limb darkening (LD) quadratic law requiring no prior central value from stellar atmospheric models. With the non-linear LD law, the method has all the advantages of not needing atmospheric models but does not converge. The iterative method gives a different $R_{p}/R_{\ast}$ for WASP-121b at a significance level of 1$\sigma$ when compared with existing non-iterative methods. To assess the origins and implications of this difference, we generate and analyze light curves with known values of the limb darkening coefficients (LDCs). We find that non-iterative modeling with LDC priors from stellar atmospheric models results in an inconsistent $R_{p}/R_{\ast}$ at 1.5$\sigma$ level when the known LDC values are as those previously found when modeling real data by the iterative method. In contrast, the LDC values from the iterative modeling yields the correct value of $R_{p}/R_{\ast}$ to within 0.25$\sigma$. For more general cases with different known inputs, Monte Carlo simulations show that the iterative method obtains unbiased LDCs and correct $R_{p}/R_{\ast}$ to within a significance level of 0.3$\sigma$. Biased LDC priors can cause biased LDC posteriors and lead to bias in the $R_{p}/R_{\ast}$ of up to 0.82$\%$, 2.5$\sigma$ for the quadratic law and 0.32$\%$, 1.0$\sigma$ for the non-linear law. Our improvement in $R_{p}/R_{\ast}$ estimation is important when analyzing exoplanet atmospheres.

  • TESS Timings of 31 Hot Jupiters with Ephemeris Uncertainties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A precise transit ephemeris serves as the premise for follow-up exoplanet observations. We compare TESS Objects of Interest (TOI) transit timings of 262 hot Jupiters with the archival ephemeris and find 31 of them having TOI timing offsets, among which WASP-161b shows the most significant offset of -203.7$\pm$4.1 minutes. The median value of these offsets is 17.8 minutes, equivalent to 3.6 $\sigma$. We generate TESS timings in each sector for these 31 hot Jupiters, using a self-generated pipeline. The pipeline performs photometric measurements to TESS images and produces transit timings by fitting the light curves. We refine and update the previous ephemeris, based on these TESS timings (uncertainty $\sim$ 1 minute) and a long timing baseline ($\sim 10$ years). Our refined ephemeris gives the transit timing at a median precision of 0.82 minutes until 2025 and 1.21 minutes until 2030. We regard the timing offsets mainly originating from the underestimated ephemeris uncertainty. All the targets with timing offset larger than 10$\sigma$ present earlier timings than the prediction, which cannot be due to underestimated ephemeris uncertainty, apsidal precision, or R$\o$mer effect as those effects should be unsigned. For some particular targets, timing offsets are likely due to tidal dissipation. Our sample leads to the detection of period decaying candidates of WASP-161b and XO-3b reported previously.

  • Revisiting KELT-19Ab, WASP-156b and WASP-121b in the TESS Era

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a re-analysis of transit depths of KELT-19Ab, WASP-156b, and WASP-121b, including data from the Transiting Exoplanet Survey Satellite (TESS). The large $\sim$21$\arcsec$ TESS pixels and point spread function result in significant contamination of the stellar flux by nearby objects. We use Gaia data to fit for and remove this contribution, providing general-purpose software for this correction. We find all three sources have a larger inclination, compared to earlier work. For WASP-121b, we find significantly smaller values (13.5 degrees) of the inclination when using the 30 minutes cadence data compared to the 2 minutes cadence data. Using simulations, we demonstrate that the radius ratio of exoplanet to star ($R_{p}/R_{\ast}$) is biased small relative to data taken with a larger sampling interval although oversampling corrections mitigate the bias. This is particularly important for deriving sub-percent transit differences between bands. We find the radius ratio of exoplanet to star ($R_{p}/R_{\ast}$) in the TESS band is 7.5$\sigma$ smaller than previous work for KELT-19Ab, but consistent to within $\sim$2$\sigma$ for WASP-156b and WASP-121b. The difference could be due to specific choices in the analysis, not necessarily due to the presence of atmospheric features. The result for KELT-19Ab possibly favors a haze-dominated atmosphere. We do not find evidence for the $\sim$0.95\,$\mu$m water feature contaminating transit depths in the TESS band for these stars but show that with photometric precision of 500ppm and with a sampling of about 200 observations across the entire transit, this feature could be detectable in a more narrow $z-$band.

  • TESS Timings of 31 Hot Jupiters with Ephemeris Uncertainties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A precise transit ephemeris serves as the premise for follow-up exoplanet observations. We compare TESS Objects of Interest (TOI) transit timings of 262 hot Jupiters with the archival ephemeris and find 31 of them having TOI timing offsets, among which WASP-161b shows the most significant offset of -203.7$\pm$4.1 minutes. The median value of these offsets is 17.8 minutes, equivalent to 3.6 $\sigma$. We generate TESS timings in each sector for these 31 hot Jupiters, using a self-generated pipeline. The pipeline performs photometric measurements to TESS images and produces transit timings by fitting the light curves. We refine and update the previous ephemeris, based on these TESS timings (uncertainty $\sim$ 1 minute) and a long timing baseline ($\sim 10$ years). Our refined ephemeris gives the transit timing at a median precision of 0.82 minutes until 2025 and 1.21 minutes until 2030. We regard the timing offsets mainly originating from the underestimated ephemeris uncertainty. All the targets with timing offset larger than 10$\sigma$ present earlier timings than the prediction, which cannot be due to underestimated ephemeris uncertainty, apsidal precision, or R$\o$mer effect as those effects should be unsigned. For some particular targets, timing offsets are likely due to tidal dissipation. Our sample leads to the detection of period decaying candidates of WASP-161b and XO-3b reported previously.

  • LTD064402+245919: A Subgiant with a 1-3 M$_{\odot}$ Undetected Companion Identified from LAMOST-TD Data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Single-line spectroscopic binaries recently contribute to the stellar-mass black hole discovery, independently of the X-ray transient method. We report the identification of a single-line binary system LTD064402+245919, with an orbital period of 14.50 days. The observed component is a subgiant with a mass of 2.77$\pm$0.68M$_{\odot}$, radius 15.5$\pm$2.5R$_{\odot}$, effective temperature $T_{\rm eff}$ 4500$\pm$200K, and surface gravity log\emph{g} 2.5$\pm$0.25dex. The discovery makes use of the LAMOST time-domain (LAMOST-TD) and ZTF survey. Our general-purpose software pipeline applies the Lomb-Scargle periodogram to determine the orbital period and uses machine-learning to classify the variable type from the folded light curves. We apply a combined model to estimate the orbital parameters from both the light and radial velocity curves, taking constraints on the primary star mass, mass function, and detection limit of secondary luminosity into consideration. We obtain a radial velocity semi-amplitude of 44.6$\pm$1.5 km s$^{-1}$, mass ratio of 0.73$\pm$0.07, and an undetected component mass of 2.02$\pm$0.49M$_{\odot}$ when the type of the undetected component is not set. We conclude that the inclination is not well constrained, and that the secondary mass is larger than 1M$_{\odot}$ when the undetected component is modelled as a compact object. According to our investigations using an MCMC simulation, increasing the spectra SNR by a factor of 3 would enable the secondary light to be distinguished (if present). The algorithm and software in this work are able to serve as general-purpose tools for the identification of compact objects quiescent in X-rays.

  • Detecting and Monitoring Tidal Dissipation of Hot Jupiters in the Era of SiTian

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Transit Timing Variation (TTV) of hot Jupiters provides direct observational evidence of planet tidal dissipation. Detecting tidal dissipation through TTV needs high precision transit timings and long timing baselines. In this work, we predict and discuss the potential scientific contribution of SiTian Survey in detecting and analyzing exoplanet TTV. We develop a tidal dissipation detection pipeline for SiTian Survey that aims at time-domain astronomy with 72 1-meter optical telescopes. The pipeline includes the modules of light curve deblending, transit timing obtaining, and TTV modeling. SiTian is capable to detect more than 25,000 exoplanets among which we expect $\sim$50 sources showing evidence of tidal dissipation. We present detection and analysis of tidal dissipating targets, based on simulated SiTian light curves of XO-3b and WASP-161b. The transit light curve modeling gives consistent results within 1$\sigma$ to input values of simulated light curves. Also, the parameter uncertainties predicted by Monte-Carlo Markov Chain are consistent with the distribution obtained from simulating and modeling the light curve 1000 times. The timing precision of SiTian observations is $\sim$ 0.5 minutes with one transit visit. We show that differences between TTV origins, e.g., tidal dissipation, apsidal precession, multiple planets, would be significant, considering the timing precision and baseline. The detection rate of tidal dissipating hot Jupiters would answer a crucial question of whether the planet migrates at an early formation stage or random stages due to perturbations, e.g., planet scattering, secular interaction. SiTian identified targets would be constructive given that the sample would extend tenfold.