您选择的条件: Qinyue Fei
  • Dynamics of Molecular Gas in the Central Region of the Quasar I$\,$Zwicky$\,$1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a study of the molecular gas distribution and kinematics in the cicumnuclear region (radii $\lesssim 2\,$kpc) of the $z\approx0.061$ quasar I$\,$Zwicky$\,$1 using a collection of available Atacama Large Millimeter/submillimeter Array (ALMA) observations of the carbon monoxide (CO) emission. With an angular resolution of $\sim0.36''$ (corresponding to $\sim\,400\,\rm pc$), the host galaxy sub-structures including the nuclear molecular gas disk, spiral arms, and a compact bar-like component are resolved. We analyzed the gas kinematics based on the CO image cube and obtained the rotation curve and radial distribution of velocity dispersion. The velocity dispersion is about $30\,\rm km\,s^{-1}$ in the outer CO disk region and rises up to $\gtrsim 100\,\rm km\,s^{-1}$ at radius $\lesssim 1\,$kpc, suggesting that the central region of disk is dynamically hot. We constrain the CO-to-$\rm H_2$ conversion factor, $\alpha_{\rm CO}$, by modeling the cold gas disk dynamics. We find that, with prior knowledge about the stellar and dark matter components, the $\alpha_{\rm CO}$ value in the circumnuclear region of this quasar host galaxy is $1.55_{-0.49}^{+0.47}\,M_\odot\,\left(\rm K\,km\,s^{-1}\,pc^2\right)^{-1}$, which is between the value reported in ultra-luminous infrared galaxies and in the Milky-Way. The central 1$\,$kpc region of this quasar host galaxy has significant star formation activity, which can be identified as a nuclear starburst. We further investigate the high velocity dispersion in the central region. We find that the ISM turbulent pressure derived from the gas velocity dispersion is in equilibrium with the weight of the ISM. This argues against extra power from AGN feedback that significantly affects the kinematics of the cold molecular gas.

  • Dynamics of Molecular Gas in the Central Region of the Quasar I$\,$Zwicky$\,$1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a study of the molecular gas distribution and kinematics in the cicumnuclear region (radii $\lesssim 2\,$kpc) of the $z\approx0.061$ quasar I$\,$Zwicky$\,$1 using a collection of available Atacama Large Millimeter/submillimeter Array (ALMA) observations of the carbon monoxide (CO) emission. With an angular resolution of $\sim0.36''$ (corresponding to $\sim\,400\,\rm pc$), the host galaxy sub-structures including the nuclear molecular gas disk, spiral arms, and a compact bar-like component are resolved. We analyzed the gas kinematics based on the CO image cube and obtained the rotation curve and radial distribution of velocity dispersion. The velocity dispersion is about $30\,\rm km\,s^{-1}$ in the outer CO disk region and rises up to $\gtrsim 100\,\rm km\,s^{-1}$ at radius $\lesssim 1\,$kpc, suggesting that the central region of disk is dynamically hot. We constrain the CO-to-$\rm H_2$ conversion factor, $\alpha_{\rm CO}$, by modeling the cold gas disk dynamics. We find that, with prior knowledge about the stellar and dark matter components, the $\alpha_{\rm CO}$ value in the circumnuclear region of this quasar host galaxy is $1.55_{-0.49}^{+0.47}\,M_\odot\,\left(\rm K\,km\,s^{-1}\,pc^2\right)^{-1}$, which is between the value reported in ultra-luminous infrared galaxies and in the Milky-Way. The central 1$\,$kpc region of this quasar host galaxy has significant star formation activity, which can be identified as a nuclear starburst. We further investigate the high velocity dispersion in the central region. We find that the ISM turbulent pressure derived from the gas velocity dispersion is in equilibrium with the weight of the ISM. This argues against extra power from AGN feedback that significantly affects the kinematics of the cold molecular gas.

  • Exploring the radio spectral energy distribution of the ultraluminous radio-quiet quasar SDSS J0100+2802 at redshift 6.3

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report deep Karl G. Jansky Very Large Array (VLA) observations of the optically ultraluminous and radio-quiet quasar SDSS J010013.02 + 280225.8 (hereafter J0100+2802) at redshift $z=$6.3. We detected the radio continuum emission at 1.5 GHz, 6 GHz, and 10 GHz. This leads to a radio power-law spectral index of $\alpha = -0.52\pm0.18$ ($S \propto \nu^{\alpha}$). The radio source is unresolved in all VLA bands with an upper limit to the size of $0.2^{\prime \prime}$ (i.e., $\sim$ 1.1 kpc) at 10 GHz. We find variability in the flux density (increase by $\sim 33\%$) and the spectral index (steepened) between observations in 2016 and 2017. We also find that the VLA 1.5 GHz flux density observed in the same year is 1.5 times that detected with the Very Long Baseline Array (VLBA) in 2016 at the same frequency. This difference suggests that half of the radio emission from J0100+2802 comes from a compact core within 40 pc, and the rest comes from the surrounding few kpc area which is diffuse and resolved out in the VLBA observations. The diffuse emission is four times brighter than that would be expected if driven by star formation. We conclude that the central active galactic nucleus is the dominant power engine of the radio emission in J0100+2802.