您选择的条件: Gui-Lu Long
  • Global Correlation and Local Information Flows in Controllable Non-Markovian Open Quantum Dynamics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In a fully-controllable experiment platform for studying non-Markovian open quantum dynamics, we show that the non-Markovianity could be investigated from the global and local aspects. By mixing random unitary dynamics, we demonstrate non-Markovian and Markovian open quantum dynamics. From the global point of view, by tuning the base frequency we demonstrate the transition from the Markovianity to the non-Markovianity as measured by the quantum mutual information (QMI). In a Markovian open quantum process, the QMI decays monotonically, while it may rise temporarily in a non-Markovian process. However, under some circumstances, it is not sufficient to globally investigate the non-Markovianity of the open quantum dynamics. As an essential supplement, we further utilize the quantum Fisher information (QFI) flow to locally characterize the non-Markovianity in different channels. We demonstrate that the QMI in combination with the QFI flow are capable of measuring the non-Markovianity for a multi-channel open quantum dynamics.

  • Tunable partial polarization beam splitter and optomechanically induced Faraday effect

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Polarization beam splitter (PBS) is a crucial photonic element to separately extract transverse-electric (TE) and transverse-magnetic (TM) polarizations from the propagating light fields. Here, we propose a concise, continuously tunable and all-optical partial PBS in the vector optomechanical system which contains two orthogonal polarized cavity modes with degenerate frequency. The results show that one can manipulate the polarization states of different output fields by tuning the polarization angle of the pumping field and the system function as partial PBS when the pump laser polarizes vertically or horizontally. As a significant application of the tunable PBS, we propose a scheme of implementing quantum walks in resonator arrays without the aid of other auxiliary systems. Furthermore, we investigate the optomechanically induced Faraday effect in the vector optomechanical system which enables arbitrary tailoring of the input lights and the behaviors of polarization angles of the output fields in the under couple, critical couple, and over couple regimes. Our findings prove the optomechanical system is a potential platform to manipulate the polarization states in multimode resonators and boost the process of applications related to polarization modulation.

  • Experimental demonstration of phase-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The highly efficient coupling of light from conventional optical components to optical mode volumes lies in the heart of chip-based micro-devices, which is determined by the phase-matching between propagation constants of fiber taper and the whispering-gallery-mode (WGM) of the resonator. Optical gyroscopes, typically realized as fiber-optic gyroscopes and ring-laser gyroscopes, have been the mainstay in diverse applications such as positioning and inertial sensing. Here, the phase-matching is theoretically analyzed and experimentally verified. We observe Sagnac effect in a millimeter-scale wedged resonator gyroscope which has attracted considerable attention and been rapidly promoted in recent years. We demonstrate a bidirectional pump and probe scheme, which directly measures the frequency beat caused by the Sagnac effect. We establish the linear response between the detected beat frequency and the rotation velocity. The clockwise and counterclockwise rotation can also be distinguished according to the value of the frequency beat. The experimental results verify the feasibility of developing gyroscope in WGM resonator system and pave the way for future development.

  • Simultaneous ground-state cooling of multiple degenerate mechanical modes through cross-Kerr effect

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Simultaneous ground-state cooling of multiple degenerate mechanical modes is a tough issue in optomechanical system due to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing the cross-Kerr (CK) nonlinearity. At most four stable steady states can be achieved in our scheme in the presence of the CK effect, different from the bistable behavior of the standard optomechanical system. Under the constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, which results in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effects. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes N-1 CK effects with different strengths are needed. Our proposal provides new insights in dark mode control and might pave the way to manipulating of multiple quantum states in macroscopic system.

  • Dynamical encircling exceptional point in largely detuned multimode optomechanical system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dynamical encircling exceptional point(EP) shows a number of intriguing physical phenomena and its potential applications. To enrich the manipulations of optical systems in experiment, here, we study the dynamical encircling EP, i.e. state transfer process, in largely detuned multimode optomechanical system. The process of state transfer has been investigated with different factors about the location of start point, the orientation and the initial state of the trajectories around the EP in parameter space. Results show that the nonreciprocal and the chiral topological energy transfer between two optical modes are performed successfully by tuning the effective optomechanical coupling in the multimode system with large detuning. Moreover, the factor of evolution speed about system parameters is also discussed. Our work demonstrates the fundamental physics around EP in large detuning domain of multimode optomechanical system and provides an alternative for manipulating of optical modes in non-hermitian system.

  • Optomechanical compensatory cooling mechanism with exceptional points

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The ground state cooling of Brillouin scattering optomechanical system is limited by defects in practical sample. In this paper, we propose a new compensatory cooling mechanism for Brillouin scattering optomechanical system with exceptional points (EPs). By using the EPs both in optical and mechanical modes, the limited cooling process is compensated effectively. The dual-EPs system, which is discovered in this work for the first time, can be induced by two defects with specific relative angles and has function of not only actively manipulating the coupling strength of optical modes but also the Brillouin phonon modes. Our results provide new tools to manipulate the optomechanical interaction in multi-mode systems and open the possibility of quantum state transfer and quantum interface protocols based on phonon cooling in quantum applications.

  • Scalable higher-order exceptional surface with passive resonators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The sensitivity of perturbation sensing can be effectively enhanced with higher-order exceptional points due to the nonlinear response to frequency splitting. However, the experimental implementation is challenging since all the parameters need to be precisely prepared. The emergence of exceptional surface (ES) improves the robustness of the system to the external environment, while maintaining the same sensitivity. Here, we propose the first scalable protocol for realizing photonic high-order exceptional surface with passive resonators. By adding one or more additional passive resonators in the low-order ES photonic system, the 3- or arbitrary N-order ES is constructed and proved to be easily realized in experiment. We show that the sensitivity is enhanced and experimental demonstration is more resilent against the fabrication errors. The additional phase-modulation effect is also investigated.

  • Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Cavity optomechanics is important in both quantum information processing and basic physics research. In this paper, we propose an optomechanical lattice which manifests non-Hermitian physics . We first use the non-Bloch band theory to investigate the energy spectrum and transmission property of an optomechanical lattice. The generalized Brillouin zone of the system is calculated with the help of the resultant. And the periodical boundary condition (PBC) and open boundary condition energy spectrum are given, subsequently. By introducing probe laser on different sites we observed the directional amplification of the system. The direction of the amplification is analyzed combined with the non-Hermitian skin effect. The frequency that supports the amplification is analyzed by considering the PBC energy spectrum. By introducing probe laser on one site we investigate the onsite transmission property. Optomechanically induced transparency (OMIT) can be achieved in our system. By varying the parameters and size of the system, the OMIT peak can be effectively modulated or even turned into optomechanically induced amplification . Our system shows its potential as the function of a single-way signal filter. And our model can be extended to other non-Hermitian Bosonic model which may possess topological features and bipolar non-Hermitian skin effect.

  • Experimental realization of sensitivity enhancement and suppression with exceptional surfaces

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: By preparing a sensor system around isolated exceptional points, one can obtain a great enhancement of the sensitivity benefiting from the non-Hermiticity. However, this comes at the cost of reduction of the flexibility of the system, which is critical for practical applications. By generalizing the exceptional points to exceptional surfaces, it has been theoretically proposed recently that enhanced sensitivity and flexibility can be combined. Here, we experimentally demonstrate an exceptional surface in a non-Hermitian photonic sensing system, which is composed of a whispering-gallery-mode microresonator and two nanofiber waveguides, resulting in a unidirectional coupling between two degenerate counter-propagating modes with an external optical isolator. The system is simple, robust, and can be easily operated around an exceptional surface. On the one hand, we observe sensitivity enhancement by monitoring the resonant frequency splitting caused by small perturbations. This demonstration of exceptional-surface-enhanced sensitivity paves the way for practical non-Hermitian sensing applications. On the other hand, we also show the suppression of frequency splitting around the exceptional surface for the first time.