您选择的条件: Huichao Xu
  • Directly Characterizing the Coherence of Quantum Detectors by Sequential Measurement

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The quantum properties of quantum measurements are indispensable resources in quantum information processing and have drawn extensive research interest. The conventional approach to reveal the quantum properties relies on the reconstruction of the entire measurement operators by quantum detector tomography. However, many specific properties can be determined by a part of matrix entries of the measurement operators, which provides us the possibility to simplify the process of property characterization. Here, we propose a general framework to directly obtain individual matrix entries of the measurement operators by sequentially measuring two non-compatible observables. This method allows us to circumvent the complete tomography of the quantum measurement and extract the useful information for our purpose. We experimentally implement this scheme to monitor the coherent evolution of a general quantum measurement by determining the off-diagonal matrix entries. The investigation of the measurement precision indicates the good feasibility of our protocol to the arbitrary quantum measurements. Our results pave the way for revealing the quantum properties of quantum measurements by selectively determining the matrix entries of the measurement operators.

  • Direct Characterization of Quantum Measurements using Weak Values

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The time-symmetric formalism endows the weak measurement and its outcome, the weak value,many unique features. In particular, it allows a direct tomography of quantum states without resort to complicated reconstruction algorithms and provides an operational meaning to wave functions and density matrices. Here, we propose and experimentally demonstrate the direct tomography of a measurement apparatus by taking the backward direction of weak measurement formalism. Our protocol works rigorously with the arbitrary measurement strength, which offers an improved accuracy and precision. The precision can be further improved by taking into account the completeness condition of the measurement operators, which also ensures the feasibility of our protocol for the characterization of the arbitrary quantum measurement. Our work provides new insight on the symmetry between quantum states and measurements, as well as an efficient method to characterize a measurement apparatus.