您选择的条件: Xiaohua Ma
  • Galaxy Image Classification using Hierarchical Data Learning with Weighted Sampling and Label Smoothing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the development of a series of Galaxy sky surveys in recent years, the observations increased rapidly, which makes the research of machine learning methods for galaxy image recognition a hot topic. Available automatic galaxy image recognition researches are plagued by the large differences in similarity between categories, the imbalance of data between different classes, and the discrepancy between the discrete representation of Galaxy classes and the essentially gradual changes from one morphological class to the adjacent class (DDRGC). These limitations have motivated several astronomers and machine learning experts to design projects with improved galaxy image recognition capabilities. Therefore, this paper proposes a novel learning method, ``Hierarchical Imbalanced data learning with Weighted sampling and Label smoothing" (HIWL). The HIWL consists of three key techniques respectively dealing with the above-mentioned three problems: (1) Designed a hierarchical galaxy classification model based on an efficient backbone network; (2) Utilized a weighted sampling scheme to deal with the imbalance problem; (3) Adopted a label smoothing technique to alleviate the DDRGC problem. We applied this method to galaxy photometric images from the Galaxy Zoo-The Galaxy Challenge, exploring the recognition of completely round smooth, in between smooth, cigar-shaped, edge-on and spiral. The overall classification accuracy is 96.32\%, and some superiorities of the HIWL are shown based on recall, precision, and F1-Score in comparing with some related works. In addition, we also explored the visualization of the galaxy image features and model attention to understand the foundations of the proposed scheme.

  • Galaxy Image Classification using Hierarchical Data Learning with Weighted Sampling and Label Smoothing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the development of a series of Galaxy sky surveys in recent years, the observations increased rapidly, which makes the research of machine learning methods for galaxy image recognition a hot topic. Available automatic galaxy image recognition researches are plagued by the large differences in similarity between categories, the imbalance of data between different classes, and the discrepancy between the discrete representation of Galaxy classes and the essentially gradual changes from one morphological class to the adjacent class (DDRGC). These limitations have motivated several astronomers and machine learning experts to design projects with improved galaxy image recognition capabilities. Therefore, this paper proposes a novel learning method, ``Hierarchical Imbalanced data learning with Weighted sampling and Label smoothing" (HIWL). The HIWL consists of three key techniques respectively dealing with the above-mentioned three problems: (1) Designed a hierarchical galaxy classification model based on an efficient backbone network; (2) Utilized a weighted sampling scheme to deal with the imbalance problem; (3) Adopted a label smoothing technique to alleviate the DDRGC problem. We applied this method to galaxy photometric images from the Galaxy Zoo-The Galaxy Challenge, exploring the recognition of completely round smooth, in between smooth, cigar-shaped, edge-on and spiral. The overall classification accuracy is 96.32\%, and some superiorities of the HIWL are shown based on recall, precision, and F1-Score in comparing with some related works. In addition, we also explored the visualization of the galaxy image features and model attention to understand the foundations of the proposed scheme.

  • Hardware-algorithm collaborative computing with photonic spiking neuron chip based on integrated Fabry-P\'erot laser with saturable absorber

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic neuromorphic computing has emerged as a promising avenue toward building a low-latency and energy-efficient non-von-Neuman computing system. Photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. However, the nonlinear computation of PSNN remains a significant challenging. Here, we proposed and fabricated a photonic spiking neuron chip based on an integrated Fabry-P\'erot laser with a saturable absorber (FP-SA) for the first time. The nonlinear neuron-like dynamics including temporal integration, threshold and spike generation, refractory period, and cascadability were experimentally demonstrated, which offers an indispensable fundamental building block to construct the PSNN hardware. Furthermore, we proposed time-multiplexed spike encoding to realize functional PSNN far beyond the hardware integration scale limit. PSNNs with single/cascaded photonic spiking neurons were experimentally demonstrated to realize hardware-algorithm collaborative computing, showing capability in performing classification tasks with supervised learning algorithm, which paves the way for multi-layer PSNN for solving complex tasks.