您选择的条件: Xubiao Peng
  • Wafer-level substrate-free low-stress silicon nitride platform for THz metadevices and monolithically integrated narrowband metamaterial absorbers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The implementation of terahertz (THz) wafer-level metadevices is critical to advance the science for applications including (I) integrated focal plane array which can image for biology and (II) integrated narrowband absorbers for high spectral resolution THz spectroscopy. Substantial progress has been made in the development of THz metamaterials; however, a wafer-level low-stress THz metadevices platform remains a challenge. This paper experimentally demonstrates a substrate-free THz metadevices platform adopting engineered Si-rich and low-stress silicon nitride (SiNx) thin films, achieving an extensive THz transparency up to f = 2.5 THz. A new analytical model is first reported from the Lorentz model that can accurately predict spectral responses of metal insulator metal (MIM) metamaterial absorbers. The model is experimentally validated in the THz range and exploited for the first demonstration of a THz absorber, which exhibits performance approaching the predicted results. Our results show that the wafer-level SiNx platform will accelerate the development of large-scale, sophisticated substrate-free THz metadevices. The Lorentz model and its quadratic model will be a very practical method for designing THz metadevices.

  • Ultralow-threshold green fluorescent protein laser based on high Q microbubble resonators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Biological lasers have attracted vast attention because of their potential medical application prospects, especially the low threshold biological laser, which can be used for ultrasensitive biological detection while ensuring that its luminous gain medium is not damaged by the high-energy pump light. By coupling the low concentration green fluorescent protein (GFP) solution with a high Q whispering gallery mode microbubble resonator, we managed to fabricate a miniature GFP laser with ultralow lasing threshold of 500 nJ/mm^2. The energy used to excite the GFP can be reduced to 380 fJ, two orders of magnitude lower than that of the lowest excitation energy GFP laser known. The Q value of the optical cavity in this biological laser is 5.3 x 10^7, the highest among GFP lasers at present. We further confirmed the long-term stability of the working characteristics of GFP laser for the first time and found that its optical characteristics can be maintained for at least 23 days. Finally, we measured the effects of different concentrations of fluorescent protein on the laser threshold. The data show that this biological laser can be used for a highly sensitive detection of GFP concentration.