您选择的条件: Xiao Yang
  • Comparison of Two Methods for Calculating Magnetic Helicity in the Solar Corona

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Duo to the large magnetic Reynolds number, the magnetic helicity originating from the solar interior can be carried away through the photosphere into the corona. However, the relationship between the accumulated magnetic helicity flux through the photosphere and the magnetic helicity in the corona is still unclear. By selecting 36 newly emerging active regions in the 23rd solar cycle, we apply optical flow methods to derive the accumulated magnetic helicity through the photosphere ($H_m^p$) by using the sequential longitudinal magnetograms, use nonlinear force-free field extrapolation to obtain the 3D coronal magnetic field, and adopt finite volume methods to calculate the instantaneous relative magnetic helicity in the corona ($H_m^c$) by using vector magnetograms. It is found that the local correlation tracking (LCT)-based $H_m^p$ is larger than $H_m^c$ in $1"$, and that the Differential Affine Velocity Estimator-based $H_m^p$ is more consistent with $H_m^c$ than the LCT-based $H_m^p$. $H_m^p$ is more consistent with $H_m^c$ in evaluation from $2"$ than from $1"$. Moreover, $H_m^c - H_m^p$ systematically shows consistency with the Hemispheric Helicity Rule (over 55\%), no matter which resolution and method are used. These estimations suggest that the consistency of $H_m^c$ and $H_m^p$ is partly dependent on the resolution of the magnetograms and the calculation methods.

  • Observations of pores and surrounding regions with CO 4.66 {\mu}m lines by BBSO/CYRA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar observations of carbon monoxide (CO) indicate the existence of lower-temperature gas in the lower solar chromosphere. We present an observation of pores, and quiet-Sun, and network magnetic field regions with CO 4.66 {\mu}m lines by the Cryogenic Infrared Spectrograph (CYRA) at Big Bear Solar Observatory. We used the strong CO lines at around 4.66 {\mu}m to understand the properties of the thermal structures of lower solar atmosphere in different solar features with various magnetic field strengths. AIA 1700 {\AA} images, HMI continuum images and magnetograms are also included in the observation. The data from 3D radiation magnetohydrodynamic (MHD) simulation with the Bifrost code are also employed for the first time to be compared with the observation. We used the RH code to synthesize the CO line profiles in the network regions. The CO 3-2 R14 line center intensity changes to be either enhanced or diminished with increasing magnetic field strength, which should be caused by different heating effects in magnetic flux tubes with different sizes. We find several "cold bubbles" in the CO 3-2 R14 line center intensity images, which can be classified into two types. One type is located in the quiet-Sun regions without magnetic fields. The other type, which has rarely been reported in the past, is near or surrounded by magnetic fields. Notably, some are located at the edge of the magnetic network. The two kinds of cold bubbles and the relationship between cold bubble intensities and network magnetic field strength are both reproduced by the 3D MHD simulation with the Bifrost and RH codes. The simulation also shows that there is a cold plasma blob near the network magnetic fields, causing the observed cold bubbles seen in the CO 3-2 R14 line center image. Our observation and simulation illustrate that the magnetic field plays a vital role in the generation of some CO cold bubbles.

  • Solar observation with the Fourier transform spectrometer I : Preliminary results of the visible and near-infrared solar spectrum

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Fourier transform spectrometer (FTS) is a core instrument for solar observation with high spectral resolution, especially in the infrared. The Infrared System for the Accurate Measurement of Solar Magnetic Field (AIMS), working at 10-13 $\mu m$, will use a FTS to observe the solar spectrum. The Bruker IFS-125HR, which meets the spectral resolution requirement of AIMS but just equips with a point source detector, is employed to carry out preliminary experiment for AIMS. A sun-light feeding experimental system is further developed. Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength, respectively. We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas. Although there is a wavelength limitation due to the present sun-light feeding system, the results in the wavelength band from 0.45-1.0 $\mu m$ and 1.0-2.2 $\mu m$ show a good consistence with the solar spectrum atlas, indicating the validity of our observing configuration, the data analysis method and the potential to work in longer wavelength. The work provided valuable experience for the AIMS not only for the operation of a FTS but also for the development of its scientific data processing software.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.

  • Observations of pores and surrounding regions with CO 4.66 {\mu}m lines by BBSO/CYRA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar observations of carbon monoxide (CO) indicate the existence of lower-temperature gas in the lower solar chromosphere. We present an observation of pores, and quiet-Sun, and network magnetic field regions with CO 4.66 {\mu}m lines by the Cryogenic Infrared Spectrograph (CYRA) at Big Bear Solar Observatory. We used the strong CO lines at around 4.66 {\mu}m to understand the properties of the thermal structures of lower solar atmosphere in different solar features with various magnetic field strengths. AIA 1700 {\AA} images, HMI continuum images and magnetograms are also included in the observation. The data from 3D radiation magnetohydrodynamic (MHD) simulation with the Bifrost code are also employed for the first time to be compared with the observation. We used the RH code to synthesize the CO line profiles in the network regions. The CO 3-2 R14 line center intensity changes to be either enhanced or diminished with increasing magnetic field strength, which should be caused by different heating effects in magnetic flux tubes with different sizes. We find several "cold bubbles" in the CO 3-2 R14 line center intensity images, which can be classified into two types. One type is located in the quiet-Sun regions without magnetic fields. The other type, which has rarely been reported in the past, is near or surrounded by magnetic fields. Notably, some are located at the edge of the magnetic network. The two kinds of cold bubbles and the relationship between cold bubble intensities and network magnetic field strength are both reproduced by the 3D MHD simulation with the Bifrost and RH codes. The simulation also shows that there is a cold plasma blob near the network magnetic fields, causing the observed cold bubbles seen in the CO 3-2 R14 line center image. Our observation and simulation illustrate that the magnetic field plays a vital role in the generation of some CO cold bubbles.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.