按提交时间
按主题分类
按作者
按机构
您选择的条件: Yang Wang
  • A characterization study on perovskite X-ray detector performance based on a digital radiography system

    分类: 核科学技术 >> 核探测技术与核电子学 提交时间: 2023-06-01

  • The dispersion measure of Fast Radio Bursts host galaxies: estimation from cosmological simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The dispersion measure(DM) of fast radio burst encodes important information such as its distance, properties of intervening medium. Based on simulations in the Illustris and IllustrisTNG projects, we analyze the DM of FRBs contributed by the interstellar medium and circumgalactic medium in the hosts, $\rm{DM_{host}}$. We explore two population models - tracing the star formation rate (SFR), and the stellar mass, i.e. young and old progenitors respectively. The distribution of $\rm{DM_{host}}$ shows significant differences at $z=0$ between two populations: the stellar mass model exhibits an excess at the low DM end with respect to the SFR model. The SFR (stellar mass) model has a median value of $\rm{DM_{host}}$=179 (63) $\rm{pc\, cm^{-3}}$ for galaxies with $M_*=10^{8-13}\,M_{\odot}$ in the TNG100-1. Galaxies in the Illustris-1 have a much smaller $\rm{DM_{host}}$. The distributions of $\rm{DM_{host}}$ deviate from log-normal function for both models. Furthermore, two populations differ moderately in the spatial offset from host galaxy's center, in the stellar mass function of hosts. $\rm{DM_{host}}$ increases with the stellar mass of hosts when $M_*<10^{10.5}\,M_{\odot}$, and fluctuate at higher mass. At $0展开 -->

  • Cosmic Velocity Field Reconstruction Using AI

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We develop a deep learning technique to infer the non-linear velocity field from the dark matter density field. The deep learning architecture we use is an "U-net" style convolutional neural network, which consists of 15 convolution layers and 2 deconvolution layers. This setup maps the 3-dimensional density field of $32^3$-voxels to the 3-dimensional velocity or momentum fields of $20^3$-voxels. Through the analysis of the dark matter simulation with a resolution of $2 {h^{-1}}{\rm Mpc}$, we find that the network can predict the the non-linearity, complexity and vorticity of the velocity and momentum fields, as well as the power spectra of their value, divergence and vorticity and its prediction accuracy reaches the range of $k\simeq1.4$ $h{\rm Mpc}^{-1}$ with a relative error ranging from 1% to $\lesssim$10%. A simple comparison shows that neural networks may have an overwhelming advantage over perturbation theory in the reconstruction of velocity or momentum fields.

  • Importance of Mock Observations in Validating Galaxy Properties for Cosmological Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The galaxy luminosity function and galaxy stellar mass function are fundamental statistics in the testing of galaxy formation models. Theoretical predictions based on cosmological simulations can deviate from observations, especially at the bright and faint ends. In this case, the mismatch may come from missing physics, oversimplified or inaccurate model recipes, or inappropriate methods of extracting basic astrophysical quantities from simulations. The latter is a crucial aspect to consider to avoid misleading conclusions when comparing simulations with observations. In this paper, we have applied a new method to produce `observed' galaxies identified in mock imaging of hydrodynamical simulations. We generate low-redshift mock galaxies from the TNG100-1 simulation of IllustrisTNG and analyse them using standard `observational' techniques to extract their main structural parameters. We show that our technique can produce realistic surface-brightness distributions of the simulated galaxies, including classical morphological substructures, such as spiral arms and bars. In particular, we find a very good agreement of the total luminosity and stellar mass versus halo mass relationships, and the galaxy stellar mass versus size relationship between mock observations and real galaxies. We also compare the luminosity function and the mass function of the mock galaxy sample with literature data and find a good agreement at all luminosity and mass scales. In particular, we find no significant tension at the bright end of the galaxy luminosity function, as reported in many analyses using simplified recipes to identify galaxy haloes, which in fact miscount the contribution of the extended galaxy haloes around large galaxies. This demonstrates the critical impact of using observational driven approaches to the simulation analyses to produce realistic predictions to compare to observations.

  • Sensitivity tests of cosmic velocity fields to massive neutrinos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate impacts of massive neutrinos on the cosmic velocity fields, employing high-resolution cosmological $N$-body simulations provided by the information-optimized CUBE code, where cosmic neutrinos are evolved using collisionless hydrodynamics and their perturbations can be accurately resolved. In this study we focus, for the first time, on the analysis of massive-neutrino induced suppression effects in various cosmic velocity field components of velocity magnitude, divergence, vorticity and dispersion. By varying the neutrino mass sum $M_\nu$ from 0 -- 0.4 eV, the simulations show that, the power spectra of vorticity -- exclusively sourced by non-linear structure formation that is affected by massive neutrinos significantly -- is very sensitive to the mass sum, which potentially provide novel signatures in detecting massive neutrinos. Furthermore, using the chi-square statistic, we quantitatively test the sensitivity of the density and velocity power spectra to the neutrino mass sum. Indeed, we find that, the vorticity spectrum has the highest sensitivity, and the null hypothesis of massless neutrinos is incompatible with both vorticity and divergence spectra from $M_\nu=0.1$ eV at high significance ($p$-value $= 0.03$ and $0.07$, respectively). These results demonstrate clearly the importance of peculiar velocity field measurements, in particular of vorticity and divergence components, in determination of neutrino mass and mass hierarchy.

  • AI-assisted reconstruction of cosmic velocity field from redshift-space spatial distribution of halos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The peculiar velocities of dark matter halos are crucial to study many issues in cosmology and galaxy evolution. In this study, by using the state-of-the-art deep learning technique, a UNet-based neural network, we propose to reconstruct the peculiar velocity field from the redshift-space distribution of dark matter halos. Through a point-to-point comparison and examination of various statistical properties, we demonstrate that, the reconstructed velocity field is in good agreement with the ground truth. The power spectra of various velocity field components, including velocity magnitude, divergence and vorticity, can be successfully recovered when $k\lesssim 1.1$ $h/\rm Mpc$ (the Nyquist frequency of the simulations) at about 80% accuracy. This approach is very promising and presents an alternative method to correct the redshift-space distortions using the measured 3D spatial information of halos. Additionally, for the reconstruction of the momentum field of halos, UNet achieves similar good results. Hence the applications in various aspects of cosmology are very broad, such as correcting redshift errors and improving measurements in the structure of the cosmic web, the kinetic Sunyaev-Zel'dovich effect, BAO reconstruction, etc.

  • A stochastic model to reproduce the star-formation history of individual galaxies in hydrodynamic simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The star formation history (SFH) of galaxies is critical for understanding galaxy evolution. Hydrodynamical simulations enable us to precisely reconstruct the SFH of galaxies and establish a link to the underlying physical processes. In this work, we present a model to describe individual galaxies' SFHs from three simulations: TheThreeHundred, Illustris-1 and TNG100-1. This model divides the galaxy SFH into two distinct components: the "main sequence" and the "variation". The "main sequence" part is generated by tracing the history of the $SFR-M_*$ main sequence of galaxies across time. The "variation" part consists of the scatter around the main sequence, which is reproduced by fractional Brownian motions. We find that: 1) The evolution of the main sequence varies between simulations; 2) fractional Brownian motions can reproduce many features of SFHs, however, discrepancies still exist; 3) The variations and mass-loss rate are crucial for reconstructing the SFHs of the simulations. This model provides a fair description of the SFHs in simulations. On the other hand, by correlating the fractional Brownian motion model to simulation data, we provide a 'standard' against which to compare simulations.

  • The dispersion measure of Fast Radio Bursts host galaxies: estimation from cosmological simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The dispersion measure(DM) of fast radio burst encodes important information such as its distance, properties of intervening medium. Based on simulations in the Illustris and IllustrisTNG projects, we analyze the DM of FRBs contributed by the interstellar medium and circumgalactic medium in the hosts, $\rm{DM_{host}}$. We explore two population models - tracing the star formation rate (SFR), and the stellar mass, i.e. young and old progenitors respectively. The distribution of $\rm{DM_{host}}$ shows significant differences at $z=0$ between two populations: the stellar mass model exhibits an excess at the low DM end with respect to the SFR model. The SFR (stellar mass) model has a median value of $\rm{DM_{host}}$=179 (63) $\rm{pc\, cm^{-3}}$ for galaxies with $M_*=10^{8-13}\,M_{\odot}$ in the TNG100-1. Galaxies in the Illustris-1 have a much smaller $\rm{DM_{host}}$. The distributions of $\rm{DM_{host}}$ deviate from log-normal function for both models. Furthermore, two populations differ moderately in the spatial offset from host galaxy's center, in the stellar mass function of hosts. $\rm{DM_{host}}$ increases with the stellar mass of hosts when $M_*<10^{10.5}\,M_{\odot}$, and fluctuate at higher mass. At $0展开 -->

  • AI-assisted reconstruction of cosmic velocity field from redshift-space spatial distribution of halos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The peculiar velocities of dark matter halos are crucial to study many issues in cosmology and galaxy evolution. In this study, by using the state-of-the-art deep learning technique, a UNet-based neural network, we propose to reconstruct the peculiar velocity field from the redshift-space distribution of dark matter halos. Through a point-to-point comparison and examination of various statistical properties, we demonstrate that, the reconstructed velocity field is in good agreement with the ground truth. The power spectra of various velocity field components, including velocity magnitude, divergence and vorticity, can be successfully recovered when $k\lesssim 1.1$ $h/\rm Mpc$ (the Nyquist frequency of the simulations) at about 80% accuracy. This approach is very promising and presents an alternative method to correct the redshift-space distortions using the measured 3D spatial information of halos. Additionally, for the reconstruction of the momentum field of halos, UNet achieves similar good results. Hence the applications in various aspects of cosmology are very broad, such as correcting redshift errors and improving measurements in the structure of the cosmic web, the kinetic Sunyaev-Zel'dovich effect, BAO reconstruction, etc.

  • \textsc{The Three Hundred} project: The \textsc{Gizmo-Simba} run

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We introduce \textsc{Gizmo-Simba}, a new suite of galaxy cluster simulations within \textsc{The Three Hundred} project. \textsc{The Three Hundred} consists of zoom re-simulations of 324 clusters with $M_{200}\gtrsim 10^{14.8}M_\odot$ drawn from the MultiDark-Planck $N$-body simulation, run using several hydrodynamic and semi-analytic codes. The \textsc{Gizmo-Simba} suite adds a state-of-the-art galaxy formation model based on the highly successful {\sc Simba} simulation, mildly re-calibrated to match $z=0$ cluster stellar properties. Comparing to \textsc{The Three Hundred} zooms run with \textsc{Gadget-X}, we find intrinsic differences in the evolution of the stellar and gas mass fractions, BCG ages, and galaxy colour-magnitude diagrams, with \textsc{Gizmo-Simba} generally providing a good match to available data at $z \approx 0$. \textsc{Gizmo-Simba}'s unique black hole growth and feedback model yields agreement with the observed BH scaling relations at the intermediate-mass range and predicts a slightly different slope at high masses where few observations currently lie. \textsc{Gizmo-Simba} provides a new and novel platform to elucidate the co-evolution of galaxies, gas, and black holes within the densest cosmic environments.

  • Large-scale full-programmable quantum walk and its applications

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: With photonics, the quantum computational advantage has been demonstrated on the task of boson sampling. Next, developing quantum-enhanced approaches for practical problems becomes one of the top priorities for photonic systems. Quantum walks are powerful kernels for developing new and useful quantum algorithms. Here we realize large-scale quantum walks using a fully programmable photonic quantum computing system. The system integrates a silicon quantum photonic chip, enabling the simulation of quantum walk dynamics on graphs with up to 400 vertices and possessing full programmability over quantum walk parameters, including the particle property, initial state, graph structure, and evolution time. In the 400-dimensional Hilbert space, the average fidelity of random entangled quantum states after the whole on-chip circuit evolution reaches as high as 94.29$\pm$1.28$\%$. With the system, we demonstrated exponentially faster hitting and quadratically faster mixing performance of quantum walks over classical random walks, achieving more than two orders of magnitude of enhancement in the experimental hitting efficiency and almost half of the reduction in the experimental evolution time for mixing. We utilize the system to implement a series of quantum applications, including measuring the centrality of scale-free networks, searching targets on Erd\"{o}s-R\'{e}nyi networks, distinguishing non-isomorphic graph pairs, and simulating the topological phase of higher-order topological insulators. Our work shows one feasible path for quantum photonics to address applications of practical interests in the near future.

  • Structured air lasing of N2+

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Structured light has attracted great interest in scientific and technical fields. Here, we demonstrate the first generation of structured air lasing in N2+ driven by 800 nm femtosecond laser pulses. By focusing a vortex pump beam at 800 nm in N2 gas, we generate a vortex superfluorescent radiation of N2+ at 391 nm, which carries the same photon orbital angular momentum as the pump beam. With the injection of a Gaussian seed beam at 391 nm, the coherent radiation is amplified, but the vorticity is unchanged. A new physical mechanism is revealed in the vortex N2+ superfluorescent radiation: the vortex pump beam transfers the spatial spiral phase into the N2+ gain medium, and the Gaussian seed beam picks up the spatial spiral phase and is then amplified into a vortex beam. Moreover, when we employ a pump beam with a cylindrical vector mode, the Gaussian seed beam is correspondingly amplified into a cylindrical vector beam. Surprisingly, the spatial polarization state of the amplified radiation is identical to that of the vector pump beam regardless of whether the Gaussian seed beam is linearly, elliptically, or circularly polarized. Solving three-dimensional coupled wave equations, we show how a Gaussian beam becomes a cylindrical vector beam in a cylindrically symmetric gain medium. This study provides a novel approach to generating structured light via N2+ air lasing.

  • Scalable High-Rate Twin-Field Quantum Key Distribution Networks without Constraint of Probability and Intensity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Implementation of a twin-field quantum key distribution network faces limitations, including the low tolerance of interference errors for phase-matching type protocols and the strict constraint regarding intensity and probability for sending-or-not-sending type protocols. Here, we propose a two-photon twin-field quantum key distribution protocol inspired by multiplexing in quantum repeaters. We achieve twin-field-type two-photon interference through post-matching phase-correlated single-photon interference events. We exploit the non-interference mode as the code mode to highly tolerate interference errors, and the two-photon interference naturally removes the intensity and probability constraint. Therefore, our protocol can transcend the abovementioned limitations while breaking the secret key capacity of repeaterless quantum key distribution. These features are tailored for scalable quantum networks, under which each node with fixed system parameters can dynamically switch different attenuation links. Simulations show that for a four-user network, the key rates of our protocol for all six links can either exceed or approach the secret key capacity. However, the key rates of all links are lower than the key capacity when using phase-matching type protocols. Additionally, four of the links could not extract the key when using sending-or-not-sending type protocols. We anticipate that our protocol can facilitate the development of practical and efficient quantum networks.

  • Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Twin-field quantum key distribution can overcome the secret key capacity of repeaterless quantum key distribution via single-photon interference. However, to compensate for the channel fluctuations and lock the laser fluctuations, the techniques of phase tracking and phase locking are indispensable in experiment, which drastically increase experimental complexity and hinder free-space realization. Inspired by the duality in entanglement, we herein present an asynchronous measurement-device-independent quantum key distribution protocol that can surpass the secret key capacity even without phase tracking and phase locking. Leveraging the concept of time multiplexing, asynchronous two-photon Bell-state measurement is realized by postmatching two interference detection events. For a 1 GHz system, the new protocol reaches a transmission distance of 450 km without phase tracking. After further removing phase locking, our protocol is still capable of breaking the capacity at 270 km. Intriguingly, when using the same experimental techniques, our protocol has a higher key rate than the phase-matching-type twin-field protocol. In the presence of imperfect intensity modulation, it also has a significant advantage in terms of the transmission distance over the sending-or-not-sending type twin-field protocol. With high key rates and accessible technology, our work provides a promising candidate for practical scalable quantum communication networks.