按提交时间
按主题分类
按作者
按机构
您选择的条件: Alexander P. Ji
  • Distant Echoes of the Milky Way's Last Major Merger

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The majority of the Milky Way's stellar halo consists of debris from our Galaxy's last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from GSE have been kinematically and chemically studied in the inner $30$ kpc of our Galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to $100$ kpc. We obtain follow-up spectra of stars in two strong overdensities - including the previously identified Outer Virgo Overdensity - and find them to be relatively metal-rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming $60-90$ kpc counterparts to the $15-20$ kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from $50-100$ kpc, in the same plane as the Sagittarius stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our Galaxy's stellar halo.

  • High-Resolution Chemical Abundances of the Nyx Stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk but with an unknown origin. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct detection experiments. Alternatively, Nyx could be a signature of the Milky Way's disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ($\mbox{[Fe/H]} > -1$) high-$\alpha$ component that is chemically indistinguishable from the thick disk. This rules out an originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify five substantially more metal-poor stars ($\mbox{[Fe/H]} \sim -2.0$) that have chemical abundances similar to the metal-weak thick disk. It remains unclear how stars chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger or that it is a record of the early spin-up of the Milky Way disk -- although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the Solar Neighborhood.

  • Uranium Abundances and Ages of $R$-process Enhanced Stars with Novel U II Lines

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the Universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar evolution models. The uranium abundance, which can be determined for metal-poor $r$-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a $single$ U II line at $\lambda3859$ \r{A}. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U II lines at $\lambda4050$ \r{A} and $\lambda4090$ \r{A}, in addition to the canonical $\lambda3859$ \r{A} line. We find that the U II lines at $\lambda4050$ \r{A} and $\lambda4090$ \r{A} are reliable and render U abundances in agreement with the $\lambda3859$ U abundance, for all the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2-002333, HE 1523-0901, and CS 31082-001, using multiple U II lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early Universe, especially of $r$-process elements.

  • $S^5$: Probing the Milky Way and Magellanic Clouds potentials with the 6-D map of the Orphan-Chenab stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a 6-D map of the Orphan-Chenab (OC) stream by combining the data from Southern Stellar Stream Spectroscopic Survey ($S^5$) and {\it Gaia}. We reconstruct the proper motion, radial velocity, distance, on-sky track and stellar density along the stream with spline models. The stream has a total luminosity of $M_V=-8.2$ and metallicity of $\mathrm{[Fe/H]}=-1.9$, similar to classical Milky Way (MW) satellites like Draco. The stream shows drastic changes in its physical width varying from 200 pc to 1 kpc, but a constant line of sight velocity dispersion of 5 km/ss. Despite the large apparent variation in the stellar number density along the stream, the flow rate of stars along the stream is remarkably constant. We model the 6-D stream track by a Lagrange-point stripping method with a flexible MW potential in the presence of a moving extended Large Magellanic Cloud (LMC). This allows us to constrain the mass profile of the MW within the distance range 15.6 < r < 55.5 kpc, with the best measured enclosed mass of $(2.85\pm 0.1)\times 10^{11}\,M_\odot$ within 32.4 kpc. Our stream measurements are highly sensitive to the LMC mass profile with the most precise measurement of its enclosed mass made at 32.8 kpc, $(7.02\pm 0.9)\times10^{10}\, {\rm M}_\odot$. We also detect that the LMC dark matter halo extends to at least 53 kpc. The fitting of the OC stream allows us to constrain the past LMC trajectory and the degree of dynamical friction it experienced. We demonstrate that the stars in the OC stream show large energy and angular momentum spreads caused by LMC perturbation.

  • Observations of R-Process Stars in the Milky Way and Dwarf Galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: This chapter presents an overview of the recent progress on spectroscopic observations of metal-poor stars with r-process element signatures found in the Milky Way's stellar halo and satellite dwarf galaxies. Major empirical lessons related to the origins of the r-process are discussed, including the universality of the observed r-process pattern and deviations from universality among the light r-process elements and actinides. Different astrophysical sites of the r-process based on theoretical expectations are presented, including common and rare supernovae and neutron star mergers. A major distinguishing factor between r-process sites is their delay time distribution. The best constraints on the detailed r-process pattern come from Galactic halo r-process stars, but these cannot provide information on the environment of the stars' birth gas clouds. Studying r-process enrichment within dwarf galaxies can remedy the situation despite the fact that high-resolution spectroscopic observations of individual stars in these systems are very difficult to obtain. A general overview of dwarf galaxy properties and chemical evolution expectations depending on their mass and star formation duration is provided. The r-process trends depend on the stellar mass and star formation durations of dwarf galaxies in a way that clearly shows that the r-process is rare, prolific, and has both prompt and delayed sources. This work complements ongoing theoretical heavy-element nucleosynthesis explorations and experimental measurements of the properties of r-process nuclei, such as with the Facility for Rare Isotope Beams.

  • Detailed chemical abundances of stars in the outskirts of the Tucana II ultra-faint dwarf galaxy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present chemical abundances and velocities of five stars between 0.3 kpc to 1.1 kpc from the center of the Tucana II ultra-faint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (-3.6 < [Fe/H] < -1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron-peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [$\alpha$/Fe] at [Fe/H] $\approx -2.8$, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = $-1.29 \pm 0.48$ and [Mn/Fe] = $-1.33 \pm 0.33$, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ($\text{d}v_{\text{helio}}/\text{d}\theta_1=-2.6^{+3.0}_{-2.9}$ km s$^{-1}$ kpc$^{-1}$) reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of $M_{1/2} (r_h) = 1.6^{+1.1}_{-0.7}\times 10^6$ M$_{\odot}$. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in-situ stellar halo formation then other UFDs should show similar such features. Although not a unique explanation, the decline in [$\alpha$/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts.

  • The effect of the deforming dark matter haloes of the Milky Way and the Large Magellanic Cloud on the Orphan-Chenab stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It has recently been shown that the Large Magellanic Cloud (LMC) has a substantial effect on the Milky Way's stellar halo and stellar streams. Here, we explore how deformations of the Milky Way and LMC's dark matter haloes affect stellar streams, and whether these effects are observable. In particular, we focus on the Orphan-Chenab (OC) stream which passes particularly close to the LMC, and spans a large portion of the Milky Way's halo. We represent the Milky Way--LMC system using basis function expansions that capture their evolution in an $N$-body simulation. We present the properties of this system, such as the evolution of the densities and force fields of each galaxy. The OC stream is evolved in this time-dependent, deforming potential, and we investigate the effects of the various moments of the Milky Way and the LMC. We find that the simulated OC stream is strongly influenced by the deformations of both the Milky Way and the LMC, and that this effect is much larger than current observational errors. In particular, the Milky Way dipole has the biggest impact on the stream, followed by the evolution of the LMC's monopole, and the LMC's quadrupole. Detecting these effects would confirm a key prediction of collisionless, cold dark matter, and would be a powerful test of alternative dark matter and alternative gravity models.

  • Chemical Abundances of the Typhon Stellar Stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the first high-resolution chemical abundances of seven stars in the recently discovered high-energy stream Typhon. Typhon stars have apocenters >100 kpc, making this the first detailed chemical picture of the Milky Way's very distant stellar halo. Though the sample size is limited, we find that Typhon's chemical abundances are more like a dwarf galaxy than a globular cluster, showing a metallicity dispersion and no presence of multiple stellar populations. Typhon stars display enhanced $\alpha$-element abundances and increasing r-process abundances with increasing metallicity. The high-$\alpha$ abundances suggest a short star formation duration for Typhon, but this is at odds with expectations for the distant Milky Way halo and the presence of delayed r-process enrichment. If the progenitor of Typhon is indeed a new dwarf galaxy, possible scenarios explaining this apparent contradiction include a dynamical interaction that increases Typhon's orbital energy, a burst of enhanced late-time star formation that raises [$\alpha$/Fe], and/or group preprocessing by another dwarf galaxy before infall into the Milky Way. Alternatively, Typhon could be the high-energy tail of a more massive disrupted dwarf galaxy that lost energy through dynamical friction. We cannot clearly identify a known low-energy progenitor of Typhon in the Milky Way, but 70% of high-apocenter stars in cosmological simulations are from high-energy tails of large dwarf galaxies. Typhon's surprising combination of kinematics and chemistry thus underscores the need to fully characterize the dynamical history and detailed abundances of known substructures before identifying the origin of new substructures.

  • Metal Mixing in the R-Process Enhanced Ultra-Faint Dwarf Galaxy Reticulum II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ultra-faint dwarf galaxy Reticulum~II was enriched by a single rare and prolific r-process event. The r-process content of Reticulum~II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find $72^{+10}_{-12}$% of the stars are r-process-enhanced, with a mean $\left\langle\mbox{[Ba/H]}\right\rangle=-1.68~\pm~0.07$ and unresolved intrinsic dispersion $\sigma_{\rm [Ba/H]} < 0.20$. The homogeneous r-process abundances imply that Ret~II's metals are well-mixed by the time the r-enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultra-faint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r-process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r-enhanced stars in Ret~II formed in the absence of substantial pristine gas accretion, perhaps indicating that ${\approx}70$% of Ret~II stars formed after reionization.

  • Tracing stars in Milky Way satellites with A-SLOTH

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We study the stellar mass-to-halo mass relation at $z=0$ in 30 Milky Way-like systems down to the ultra-faint ($M_* < 10^5 M_\odot$) regime using the semi-analytic model A-SLOTH. A new model allows us to follow star formation and the stochastic stellar feedback from individually sampled Pop II stars. Our fiducial model produces consistent results with the stellar mass-to-halo mass relation derived from abundance matching and the observed cumulative stellar mass function above the observational completeness. We find a plateau in the stellar mass-to-halo mass relation in the ultra-faint regime. The stellar mass of this plateau tells us how many stars formed before supernovae occur and regulate further star formation, which is determined by the Pop~II star formation efficiency. We also find that the number of luminous satellites increases rapidly as $M_*$ decreases until $M_* \approx 10^4 M_\odot$. Finally, we find that the relative streaming velocity between baryons and dark matter at high redshift is important in determining the number of ultra-faint dwarf galaxies at $z=0$. The new model in A-SLOTH provides a framework to study the stellar properties and the formation history of metal-poor stars in Milky Way and its satellites.

  • Timing the r-Process Enrichment of the Ultra-Faint Dwarf Galaxy Reticulum II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with 72 +10/-12% of its stars strongly enhanced in r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color-magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization and formed ~80% of the stars in the galaxy, while the remainder of the stars formed ~3 Gyr later. When the bursts are allowed to have nonzero durations we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 +/- 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more such as GW170817.

  • Magellan/IMACS spectroscopy of Grus I: A low metallicity ultra-faint dwarf galaxy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution ($R\sim11,000$) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of $\langle$[Fe/H]$\rangle = -2.62 \pm 0.11$ dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of $-143.5\pm1.2$ km s$^{-1}$ and a velocity dispersion of $\sigma_{\text{rv}} = 2.5^{+1.3}_{-0.8}$ km s$^{-1}$ which results in a dynamical mass of $M_{1/2} (r_h) = 8^{+12}_{-4} \times 10^5$ M$_{\odot}$ and a mass-to-light ratio of M/L$_V$ = $440^{+650}_{-250}$ M$_\odot$/L$_\odot$. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L $> 80$ M$_\odot$/L$_\odot$). However, we do not resolve a metallicity dispersion ($\sigma_{\text{[Fe/H]}} < 0.44$ dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass-metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central density ($\rho_{1/2} \sim 3.5_{-2.1}^{+5.7} \times 10^7$ M$_\odot$ kpc$^{-3}$) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.