• Quantifying the sequence-function relation in gene silencing by bacterial small RNAs

    分类: 物理学 >> 交叉学科物理及相关领域的科学与技术 提交时间: 2016-05-08

    摘要: Sequence-function relations for small RNA (sRNA)-mediated gene silencing were quantified for the sRNA RyhB and some of its mRNA targets in Escherichia coli. Numerous mutants of RyhB and its targets were generated and their in vivo functions characterized at various levels of target and RyhB expression. Although a core complementary region is required for repression by RyhB, variations in the complementary sequences of the core region gave rise to a continuum of repression strengths, correlated exponentially with the computed free energy of RyhB-target duplex formation. Moreover, sequence variations inthe linker region known to interact with the RNA chaperone Hfq also gave rise to a continuum of repression strengths, correlated exponentially with thecomputed energy cost of keeping the linker region open. These results support the applicability of the thermodynamic model in predicting sRNA-mRNA interaction and suggest that sequences at these locations may be used to fine-tune the degree of repression. Surprisingly, a truncated RyhB without the Hfq-binding region is found to repress multiple targets of the wild-type RyhB effectively, both in the presence and absence of Hfq, even though the former is required for the activity of wild-type RyhB itself. These findings challenge the commonly accepted model concerning the function of Hfq in gene silencing-bothin providing stability to the sRNAs and in catalyzing the target mRNAs to take on active conformations-and raise the intriguing question of why many endogenous sRNAs subject their functions to Hfq-dependences.