Current Location:home > Browse

1. chinaXiv:202203.00076 [pdf]

Adjustment of precipitation measurements using Total Rain weighing Sensor (TRwS) gauges in the cryospheric hydrometeorology observation (CHOICE) system of the Qilian Mountains, Northwest China

ZHAO Yanni; CHEN Rensheng; HAN Chuntan; WANG Lei
Subjects: Geosciences >> Hydrology

Abstract: Precipitation is one of the most important indicators of climate data, but there are many errors in precipitation measurements due to the influence of climatic conditions, especially those of solid precipitation in alpine mountains and at high latitude areas. The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation. To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains, we established a cryospheric hydrometeorology observation (CHOICE) system in 2008 in the Qilian Mountains, which consists of six automated observation stations located between 2960 and 4800 m a.s.l. Total Rain weighing Sensor (TRwS) gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment (WMO-SPICE) were used at observation stations with the CHOICE system. To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges, we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system. Moreover, we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station. The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system. Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters. The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions. Thus, root-mean-square error (RMSE) of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135 (353%) and 0.072 mm (111%), respectively. RMSE values of liquid, solid and mixed precipitation measurements corrected by the new parameters decreased by 6%, 20% and 13%, respectively. In addition, the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system. The relative precipitation (RP) increment of different types of precipitation increased with rising altitude. The average RP increment value of snowfall at six stations was the highest, reaching 7%, while that of rainfall was the lowest, covering 3%. Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.

submitted time 2022-03-24 Cooperative journals:《Journal of Arid Land》 Hits1854Downloads270 Comment 0

2. chinaXiv:202203.00041 [pdf]

Modeling and analyzing supply-demand relationships of water resources in Xinjiang from a perspective of ecosystem services

LI Feng; LI Yaoming; ZHOU Xuewen; YIN Zun; LIU Tie; XIN Qinchuan
Subjects: Geosciences >> Hydrology

Water shortage is one bottleneck that limits economic and social developments in arid and semi-arid areas. As the impacts of climate change and human disturbance intensify across time, uncertainties in both water resource supplies and demands increase in arid and semi-arid areas. Taking a typical arid region in China, Xinjiang Uygur Autonomous Region, as an example, water yield depth (WYD) and water utilization depth (WUD) from 2002 to 2018 were simulated using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and socioeconomic data. The supply-demand relationships of water resources were analyzed using the ecosystem service indices including water supply-demand difference (WSDD) and water supply rate (WSR). The internal factors in changes of WYD and WUD were explored using the controlled variable method. The results show that the supply- demand relationships of water resources in Xinjiang were in a slight deficit, but the deficit was alleviated due to increased precipitation and decreased WUD of irrigation. WYD generally experienced an increasing trend, and significant increase mainly occurred in the oasis areas surrounding both the Junggar Basin and Tarim Basin. WUD had a downward trend with a decline of 20.70%, especially in oasis areas. Water resources in most areas of Xinjiang were fully utilized and the utilization efficiency of water resources increased. The water yield module in the InVEST model was calibrated and validated using gauging station data in Xinjiang, and the result shows that the use of satellite-based water storage data helped to decrease the bias error of the InVEST model by 0.69×108 m3. This study analyzed water resource supplies and demands from a perspective of ecosystem services, which expanded the scope of the application of ecosystem services and increased the research perspective of water resource evaluation. The results could provide guidance for water resource management such as spatial allocation and structural optimization of water resources in arid and semi-arid areas.

submitted time 2022-03-15 Cooperative journals:《Journal of Arid Land》 Hits1580Downloads299 Comment 0

3. chinaXiv:202112.00013 [pdf]

A new method of searching for concealed Au deposits by using the spectrum of arid desert plant species

CUI Shichao; ZHOU Kefa; ZHANG Guanbin; DING Rufu; WANG Jinlin; CHENG Yinyi; JIANG Guo
Subjects: Geosciences >> Geography

With the increase of exploration depth, it is more and more difficult to find Au deposits. Due to the limitation of time and cost, traditional geological exploration methods are becoming increasingly difficult to be effectively applied. Thus, new methods and ideas are urgently needed. This study assessed the feasibility and effectiveness of using hyperspectral technology to prospect for hidden Au deposits. For this purpose, 48 plant (Seriphidium terrae-albae) and soil (aeolian gravel desert soil) samples were first collected along a sampling line that traverses an Au mineralization alteration zone (Aketasi mining region in an arid region of China) and were used to obtain soil Au contents by a chemical analysis method and the reflectance spectra of plants obtained with an Analytical Spectral Device (ASD) FieldSpec3 spectrometer. Then, the corresponding relationship between the soil Au content anomaly and concealed Au deposits was investigated. Additionally, the characteristic bands were selected from plant spectra using four different methods, namely, genetic algorithm (GA), stepwise regression analysis (STE), competitive adaptive reweighted sampling (CARS), and correlation coefficient method (CC), and were then input into the partial least squares (PLS) method to construct a model for estimating the soil Au content. Finally, the quantitative relationship between the soil Au content and the 15 different plant transformation spectra was established using the PLS method. The results were compared with those of a model based on the full spectrum. The results obtained in this study indicate that the location of concealed Au deposits can be predicted based on soil geochemical anomaly information, and it is feasible and effective to use the full plant spectrum and PLS method to estimate the Au content in the soil. The cross-validated coefficient of determination (R2) and the ratio of the performance to deviation (RPD) between the predicted value and the measured value reached the maximum of 0.8218 and 2.37, respectively, with a minimum value of 6.56 μg/kg for the root-mean-squared error (RMSE) in the full spectrum model. However, in the process of modeling, it is crucial to select the appropriate transformation spectrum as the input parameter for the PLS method. Compared with the GA, STE, and CC methods, CARS was the superior characteristic band screening method based on the accuracy and complexity of the model. When modeling with characteristic bands, the highest accuracy, R2 of 0.8016, RMSE of 7.07 μg/kg, and RPD of 2.20 were obtained when 56 characteristic bands were selected from the transformed spectra (1/lnR)' (where it represents the first derivative of the reciprocal of the logarithmic spectrum) of sampled plants using the CARS method and were input into the PLS method to construct an inversion model of the Au content in the soil. Thus, characteristic bands can replace the full spectrum when constructing a model for estimating the soil Au content. Finally, this study proposes a method of using plant spectra to find concealed Au deposits, which may have promising application prospects because of its simplicity and rapidity.

submitted time 2021-12-03 Cooperative journals:《Journal of Arid Land》 Hits4328Downloads867 Comment 0

4. chinaXiv:202112.00014 [pdf]

Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants

WANG Lei; FAN Lianlian; JIANG Li; TIAN Changyan
Subjects: Geosciences >> Geography

The purpose of the current study was to investigate the eco-physiological responses, in terms of growth and C:N:P stoichiometry of plants cultured from dimorphic seeds of a single-cell C4 annual Suaeda aralocaspica (Bunge) Freitag and Schütze under elevated CO2. A climatic chamber experiment was conducted to examine the effects of ambient (720 μg/L) and CO2-enriched (1440 μg/L) treatments on these responses in S. aralocaspica at vegetative and reproductive stages in 2012. Result showed that elevated CO2 significantly increased shoot dry weight, but decreased N:P ratio at both growth stages. Plants grown from dimorphic seeds did not exhibit significant differences in growth and C:N:P stoichiometric characteristics. The transition from vegetation to reproductive stage significantly increased shoot:root ratio, N and P contents, but decreased C:N, C:P and N:P ratios, and did not affect shoot dry weight. Moreover, our results indicate that the changes in N:P and C:N ratios between ambient and elevated CO2 are mainly caused by the decrease of N content under elevated CO2. These results provide an insight into nutritional metabolism of single-cell C4 plants under climate change.

submitted time 2021-12-03 Cooperative journals:《Journal of Arid Land》 Hits2308Downloads291 Comment 0

5. chinaXiv:202112.00016 [pdf]

Temporal and spatial variations of net primary productivity and its response to groundwater of a typical oasis in the Tarim Basin, China

SUN Lingxiao; YU Yang; GAO Yuting; ZHANG Haiyan; YU Xiang; HE Jing; WANG Dagang; Ireneusz MALIK; Malgorzata WISTUBA; YU Ruide
Subjects: Geosciences >> Geography

Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce precipitation in the arid oasis regions, groundwater plays a key role in restricting the development of the vegetation. The Qira Oasis is located on the southern margin of the Taklimakan Desert (Tarim Basin, China) that is one of the most vulnerable regions regarding vegetation growth and water scarcity in the world. Based on remote sensing images of the Qira Oasis and daily meteorological data measured by the ground stations during the period 2006–2019, this study analyzed the temporal and spatial patterns of NPP in the oasis as well as its relation with the variation of groundwater depth using a modified Carnegie Ames Stanford Approach (CASA) model. At the spatial scale, NPP of the vegetation decreased from the interior of the Qira Oasis to the margin; at the temporal scale, NPP of the vegetation in the oasis fluctuated significantly (ranging from 29.80 to 50.07 g C/(m2?month)) but generally showed an increasing trend, with the average increase rate of 0.07 g C/(m2?month). The regions with decreasing NPP occupied 64% of the total area of the oasis. During the study period, NPP of both farmland and grassland showed an increasing trend, while that of forest showed a decreasing trend. The depth of groundwater was deep in the south of the oasis and shallow in the north, showing a gradual increasing trend from south to north. Groundwater, as one of the key factors in the surface change and evolution of the arid oasis, determines the succession direction of the vegetation in the Qira Oasis. With the increase of groundwater depth, grassland coverage and vegetation NPP decreased. During the period 2008–2015, with the recovery of groundwater level, NPP values of all types of vegetation with different coverages increased. This study will provide a scientific basis for the rational utilization and sustainable management of groundwater resources in the oasis.

submitted time 2021-12-03 Cooperative journals:《Journal of Arid Land》 Hits2461Downloads289 Comment 0

  [1 Pages/ 5 Totals]